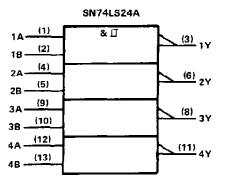
SDLS138

- Functionally and Mechanically Identical to 'LS13, 'LS14, and 'LS132, Respectively
- Improved Line-Receiving Characteristics
- P-N-P Inputs Reduce System Loading
- Excellent Noise Immunity with Typical Hysteresis of 0.8 V


description

Each circuit functions as a NAND gate or inverter, but because of the Schmitt action, it has different input threshold levels for positive-going (V_{T+}) and for negative-going (V_{T-}) signals. The hysteresis or backlash, which is the difference between the two threshold levels $(V_{T+} - V_{T-})$, is typically 800 millivolts.

These circuits are temperature-compensated and can be triggered from the slowest of input ramps and still give clean, jitter-free output signals.

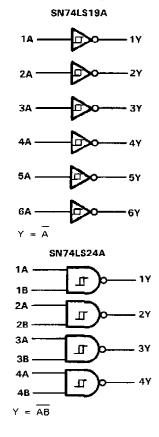
logic symbols[†]

	SN74LS19A	
1A <u>(1)</u>	П	1Y
2A-(3)		(4) 2Y
3A <u>(5)</u>		(6) 3Y
4A (9)		(<u>8)</u> 4Y
5A-(11)		(10) 5Y
6A <u>(13)</u>		(12) 6Y

[†] These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing daes not necessarily include testing of all parameters.

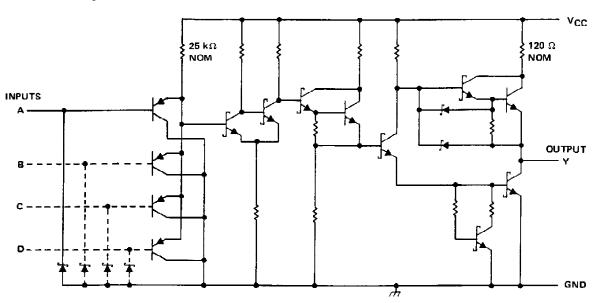
SN74LS19A, SN74LS24A SCHMITT-TRIGGER POSITIVE-NAND GATES AND INVERTERS WITH TOTEM-POLE OUTPUTS JANUARY 1981 - REVISED MARCH 1988


SN74LS19A D. J,	OR N	PACKAGE
(TOP VIE	W }	

1A 1 14 VCC 1Y 2 13 6A 2A 3 12 6Y 2Y 4 11 5A 3A 5 10 5Y 3Y 6 9 4A GND 7 8 4Y

SN74LS24A	. D, J,	OR N	PACKAGE				
(TOP VIEW)							

_		
1A[]1	014	DVcc
18 🗋 2	13	<u> </u> 4₿
1Y∐3	12	□ 4 A
2A 🛛 4	11	□ 4 Y
28 🗋 5	10	∐ 3₿
2Y 🗌 6	9	3A
SND 🗍 7	8	<u>[</u>] 3Υ


logic diagrams (positive logic)

TEXAS EXASTING INSTRUMENTS

SN74LS19A, SN74LS24A SCHMITT-TRIGGER POSITIVE-NAND GATES AND INVERTERS WITH TOTEM-POLE OUTPUTS

schematic (each gate)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

-	Supply voltage, VCC (see Note 1)	7 V
	Input voltage	7 V
	Operating free-air temperature range 0°C to 1	70°C
	Storage temperature range	50°C

recommended operating conditions

	MIN	NOM	МАХ	UNIT
Supply voltage, V _{CC}	4.75	5	5.25	V
High-level output current, IOH			- 400	μA
Low-level output current, IOL			8	mA
Operating free-air temperature, TA	0		70	°C

SN74LS19A, SN74LS24A SCHMITT-TRIGGER POSITIVE-NAND GATES AND INVERTERS WITH TOTEM POLE OUTPUTS

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

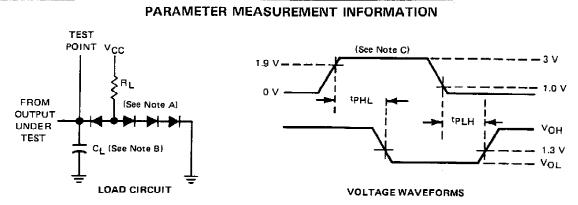
PARAMETER		TEST CONDITIONS [†]				мах	UNIT
V _{T +}	V _{CC} = 5 V			1.65	1.9	2.15	V
V _T -	$V_{CC} = 5 V$			0.75	1.0	1.25	V
Hysteresis (V _{T+} - V _{T-})	V _{CC} = 5 V			0.4	0.9		v
VIK	Vcc = MIN.	lj = - 18 mA			- 1.5		v
Voн	V _{CC} - MIN,	Vi ÷ VT-min	IOH = -0.4 mA	2.7	3.4		V
Max		$V_{I} = V_{T+max}$	$l_{OL} = 4 \text{ mA}$		0.25	0.4	v
Vol	$v_{CC} = w_{III}v_{i}$		$I_{OL} = 8 mA$		0.35	0.5	v
Ι _{Τ+}	Vcc = 5 V.	$V_{I} = V_{T+}$			-2	- 20	μA
I _{T -}	$V_{\rm CC} = 5 V_{\rm r}$	$V_{\rm I} = V_{\rm T} =$			- 5	- 30	μA
- II	$V_{CC} = MAX,$	V ₁ = 7 V			0.1		mΑ
IIH	$V_{CC} = MAX,$	VI = 2.7 V				20	μA
1IL	V _{CC} = MAX,	V = 0.4 V				- 50	μA
los§	$V_{CC} = MAX,$	$V_{I} = V_{O} = 0 V$		- 20		- 100	mA
			'LS19A		9.9	18	Å
Іссн	$V_{CC} = MAX,$	v] = v v	'LS24A		6.6	12	mA
1		$\lambda c = 4 E \lambda c$	'LS19A		17	30	- 0
ICCL	$V_{CC} = MAX, V_I = 4.5 V$	vj = 4.5 V	'LS24A		11	20	mΑ

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommanded operating conditions.

İ

:

⁴ All typical values are at V_{CC} = 5 V, $T_A = 25$ °C. ⁵ Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.


switching characteristics, VCC - 5 V, TA - 25 °C (see Figure 1)

	FROM	то	TEST CONDITIONS	SI	174LS1	9A	SN	74L\$2	4A	UNIT
PARAMETER	(INPUT)	(OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	MIN	ТҮР	MAX	UNIT
tPLH	Any	Y	$R_{I} = 2 k\Omega$, $C_{I} = 15 pF$		13	20		13	20	ns
^t PHL	Anγ	Y	$H_{L} = 2 R_{u}, C_{L} = 15 \text{ pr}$		18	30		25	40	ns

tpLH = Propagation delay time, low-to-high-level output tpHL = Propagation delay time, high-to-low-level output

SN74LS19A, SN74LS24A SCHMITT TRIGGER POSITIVE-NAND GATES AND INVERTERS WITH TOTEM-POLE OUTPUTS

NOTES: A. All diodes are IN3064 or equivalent.

B. CL includes probe and circuit capacitance.

C. The generator characteristics are: PRR = 1 MHz, t_{r} = 15 ns, t_{p} = 6 ns, Z_{o} = 50 $\Omega.$

FIGURE 1

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
SN74LS19AD	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS19ADE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS19ADR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS19ADRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS19AN	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74LS19ANE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74LS19ANSR	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS19ANSRE4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS24AD	OBSOLETE	SOIC	D	14		TBD	Call TI	Call TI
SN74LS24AN	OBSOLETE	PDIP	Ν	14		TBD	Call TI	Call TI

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

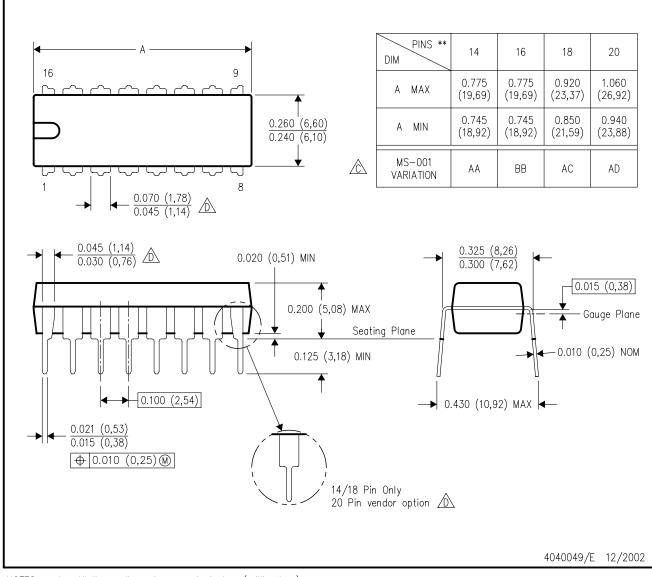
OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

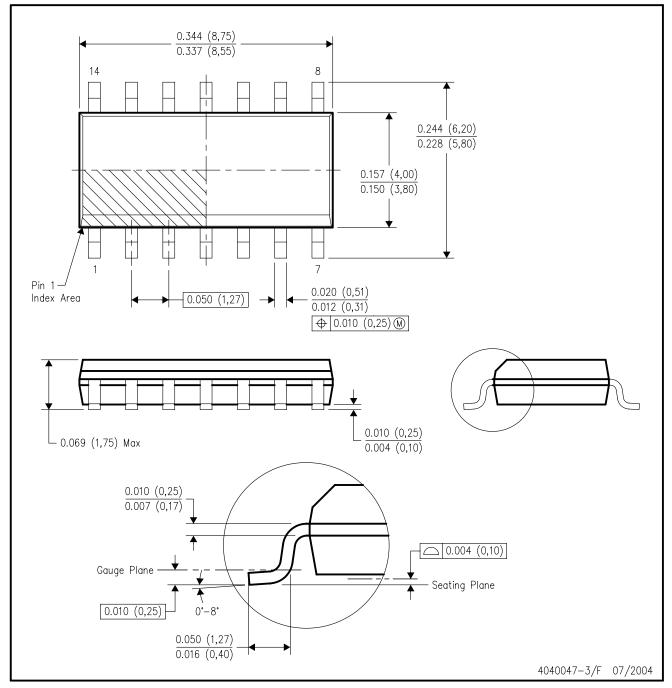

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN


NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G14)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-012 variation AB.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0-10 Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated