
#### Ejemplo de comunicación

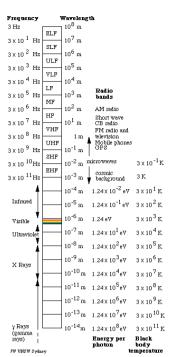






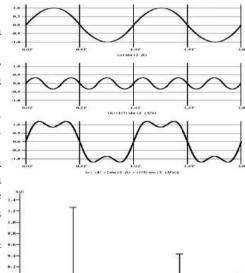
- Comunicación = transvase de <u>información</u> entre dos o más entes a través de un medio físico, mediante signos entendibles por todas las partes y siguiendo unos procedimientos establecidos por todas las partes
- Transductores -> conversión entre magnitudes físicas/electricas
- Transmisor -> adaptación de la señal al medio (modulación)
- Medio de transmisión -> transmisión de las señales eléctricas/ópticas
- Canal de comunicación = transmisor + medio + receptor
- Efectos indeseados -> pérdida de información

#### TELECOMUNICACIONES


- 1835-1844 Samuel F. B. Morse: invención del telégrafo
- 1858 tendido del cable trasatlántico
- 1874 Emile Baudot: invención del telégrafo múltiple (varios mensajes simultáneos por la misma línea)
- 1876 Alexander Graham Bell: invención del teléfono.
- · 1895 telégrafo sin hilos de Marconi (precursor) de las transmisiones por radio
- 1920 primera emisora de radio
- 1920 circuito superheterodino de Armstrong (precursor de la radio moderna)
- 1925 inicio de la televisión
- 1941 inicio de la radiodifusión comercial en FM
- 1946 inicio de la TV color
- 1950 primeros sistemas de telefonía por radio
- · 1957 lanzamiento del Sputnik ruso
- 1971 aparición de la red ARPANET (Estados Unidos)
- 1972 aparición de la red IBERPAC (España)
- 1977 Primer sistema de fibra óptica para prestar servicios telefónicos
- 1982 inicio de la telefonía móvil en España
- 1995 inicio de la telefonía GSM en España
- 2001 inicio de la telefonía GPRS en España
- · 2005 inicio de la telefonía UMTS

#### **TELECOMUNICACIONES**

- Normalización
  - ITU (Unión internacional de Telecomunicaciones)
    - CCITT (Comité Consultivo Internacional de Teléfonos y Telégrafos)
    - CCIR (Comité Consultivo Internacional de Radiocomunicaciones)
  - · ECMA (Asociación de Fabricantes Europeos de Ordenadores)
  - ANSI (American National Standards Institute)
  - EIA (Electronics Industries Association)
  - · ISO (International Standards Organization)
  - IETF (Internet Engineering Task Force)
  - · CEN (Comité Europeo para Estandarización)
  - IEEE (Instituto de Ingeniería Electrica y Electrónica)


#### Señales en la frecuencia

- 30 Hz 300 Hz. Extremely Low Frecuency (ELF) Radiaciones producidas por redes eléctricas.
- 300 Hz 3 kHz. Ultra Low Frequency (ULF). Frecuencias de voz.
- 3 30 kHz. Very Low Frequency (VLF). Capacidad de transporte de información muy pequeña.
- 30 300 kHz. Low Frequency (LF). Ondas kilométricas. Propagación a lo largo del mundo mediante reflexión en la inonosfera y en la tierra.
- 300 kHz 3 MHz. Medium Wave (MW). (Ondas hectométricas). Peor 3×10 8 Hz reflexión, pero aún así se propagan cientos de Km.
- 3 30 MHz. High Frequency (HF) o Short Wave (SW). Ondas decamétricas. Incluye Banda Ciudadana (CB) y radiocontrol. Mayor capacidad de transporte
- 30 300 MHz. Very High Frequency (VHF). Ondas métricas. Incluye FM y televisión. Antenas típicamente de ½ o ¼ de la longitud de onda. Transmisión sólo en línea recta. Gran atenuación por obstáculos
- 300 MHz 3 GHz. Ultra High Frequency (UHF). Ondas decimétricas. Televisión y telefonía móvil. Gran capacidad de transporte de información.
- 3 30 GHz. Super High Frequency (SHF). Ondas centimétricas o microondas Comunicación por satélite. Muy alta capacidad de transporte. Altísima atenuación por obstáculos
- 30 300 GHz. Extra High Frequency (EHF). Ondas milimétricas. Poco usada por sus dificultades técnicas.



#### Dualidad tiempo-frecuencia

- Señal sinusoidal = tono puro
- Señal compuesta -> formada por muchos tonos (Fourier)
- Espectro de la señal -> frecuencias contenidas en la señal y su amplitud
- Ancho de banda de la señal
   -> margen de frecuencias del espectro
- Señales con ancho de banda ilimitado -> ancho de banda efectivo = banda que contiene la mayor parte de la energía
- Componente continua (DC) = componente de frecuencia 0



#### • Ondas -> propagación de la señal en el espacio

- Velocidad de propagación (v) -> depende del medio
- Longitud de onda ( $\lambda$ ) -> distancia entre dos dos puntos "en el mismo estado"  $\lambda = T \cdot v$

Características de las señales

Señal -> variación de una magnitud física (tensión/corriente) en el tiempo

Periodo (T) = tiempo que tarda en completar un ciclo (segundos)

Fase -> posición relativa en el tiempo (grados o radianes)

• Frecuencia (f) = número de ciclos por segundo -> f = 1/T (Hz = Hertzios)

Amplitud (A) -> valor máximo de la magnitud física (voltios, amperios)

• Potencia (P) -> energía que transmite por unidad de tiempo (W = Watios)

#### • Señales continuas y discretas:

Señales periódicas:

- Continua -> puede tomar cualquier valor dentro de un rango (p.e.: números decimales: 1, 1,234, 1,566678, 2, 2,333333333)
- Discretas -> sólo pueden tomar algunos valores fijados (p.e.: números enteros: 1, 2, 3, 4 ......)

| tiempo\amplitud | Continua   | Discreta |
|-----------------|------------|----------|
| Continua        | ANALÓGICA  | Discreta |
| Discreta        | Muestreada | DIGITAL  |

#### Periodicidad

- Señal periódica -> se repite en el tiempo
- Señal aperiódica -> no se repite

#### Parámetros de la comunicación

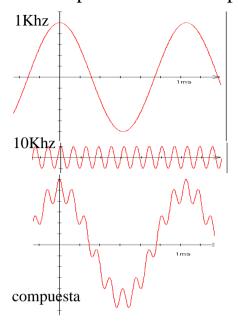
- Calidad del canal -> se mide como:
  - tasa de error (errores/bit)

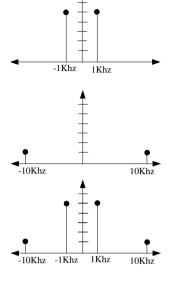
• relación S/R = 
$$(S/R)(dB) = 10 \log \frac{P_S}{P_B}$$

- Capacidad del canal = velocidad máxima de transmisión
  - Teorema de Nyquist: máxima velocidad de modulación = 2W (baudios)
  - · Teorema de Shanonn (señales multinivel):
    - Amplitud total (señal + ruido) =  $\sqrt{S+R}$
    - Separación mínima entre niveles =  $\sqrt{R}$
    - Máximo número de niveles posibles (según ruido) =  $\log_2 \sqrt{1 + S/R}$
    - Capacidad máxima del canal (bps):

$$C = W \log_2(1 + S/R)$$

- Protocolos de transmisión
  - Protocolo = conjunto de reglas que hacen posible la comunicación
  - El protocolo controla la comunicación transmitiendo información de control junto con los datos


#### Representación digital de la información


- Unidades de información
  - Información de un suceso a:  $I(a) = \log_x \frac{1}{P(a)}$ 
    - X = 2 -> Shannon
    - $X = e \rightarrow NAT$
    - $\times$  X = 10 -> Hartley
- Representación de dígitos binarios -> bits
  - Si '0' y '1' son equiprobables => 1 bit ≡ 1 Shannon

$$I('0') = \log_2 \frac{1}{0.5} = 1 Shannon$$

$$I('1') = \log_2 \frac{1}{0.5} = 1 Shannon$$

Representación tiempo-frecuencia. El espectro

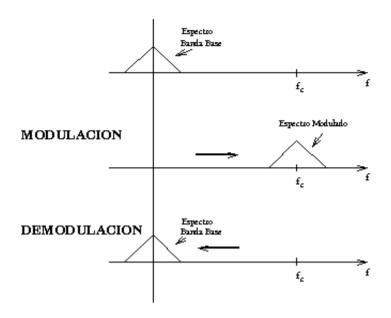




#### Parámetros de la comunicación

• Atenuación A(dB)

$$A(dB) = 10\log\frac{P_E}{P_S}$$


La atenuación es función de la frecuencia

Función de trasferencia del canal -> modifica la señal

Ancho de banda del canal -> atenuación menor del 50% en potencia (3dB)

- Distorsión = efecto por el cual el medio se comporta de forma no lineal
  - Amplitud -> se atenúa de distinta forma las distintas componentes
  - Retardo -> retardo distinto para las distintas componentes
- Perturbaciones = señales ajenas al sistema:
  - Ruido
    - Ruido térmico -> agitación de los electrones
    - Ruido de intermodulación -> no linealidad => aparición de armónicos que interfieren
    - Diafonía -> acoplamiento entre líneas que transportan señales
    - Ruido impulsivo (ráfagas)
  - · Interferencias

#### Modulación



SE UTILIZA UNA PORTADORA SENOIDAL (SENAL MODULADA):

$$\mathbf{a}_{c} = \mathbf{A}_{c} \operatorname{sen} \left( 2\pi \mathbf{f}_{c} \mathbf{t} + \mathbf{\theta}_{c} \right)$$

MODULACION ANALOGICA: SENAL ANALOGICA COMO MODULADORA

MODULACION DIGITAL : SENAL DIGITAL COMO MODULADORA

 $\mathbf{A}_{c}$  : modulacion en amplitud (am, ask)

 $\mathbf{f}_c$ : MODULACION EN FRECUENCIA (FM, FSK)

 $\theta_c$  : modulacion en fase (pm, psk)



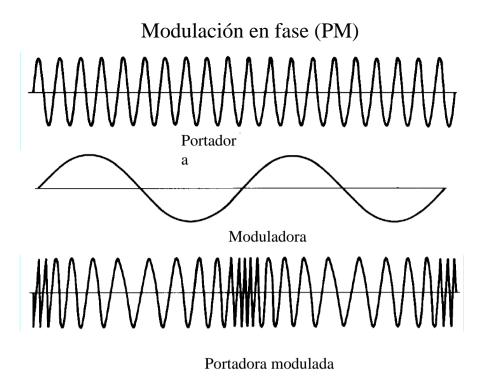
#### Adaptación de impedancias

• Potencia transmitida

$$P_L = |E|^2 \cdot \frac{R_L}{|Z_S + Z_L|^2}$$

Potencia máxima para adaptación de impedancias

• Reflexión de ondas -> coef. de reflexión de potencia

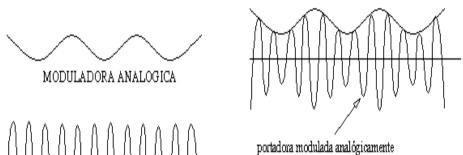

$$R_{p} = \frac{P_{incidente}}{P_{reflejada}} = \left[\frac{|Z_{L} - Z_{S}|}{|Z_{L} + Z_{S}|}\right]^{2}$$

Reflexión nula para adaptación de impedancias

#### Modulación

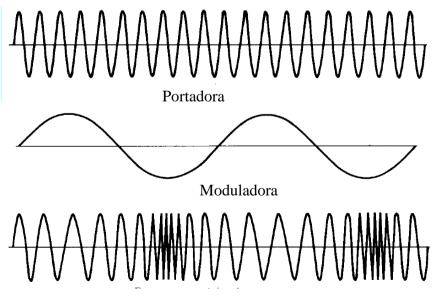
- Modulación = variación de la frecuencia de la señal para permitir su transmisión por el medio
  - Facilidad de radiación => longitud antena ~ λ
  - Reducción del ruido e interferencias
  - · Posibilidad de multiplexación
  - Superar limitaciones de los equipos -> funcionamiento óptimo a determinadas frecuencias (p.e. amplificadores)
- "Superposición" de dos señales
  - Moduladora (baja frecuencia) -> señal de información
  - Portadora (alta frecuencia) -> señal que se transmite (modificada)

| Port.\Mod. |                           | Digital            |
|------------|---------------------------|--------------------|
| Analógica  | Modulación analógica      | Modulación Digital |
|            | Codificación o modulación |                    |
| Digital    | por impulsos              | Codificación       |



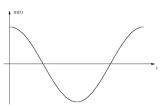

# Portadora Moduladora AM FM

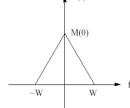
PM

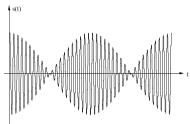

#### Modulación analógica

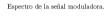


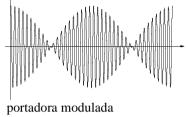


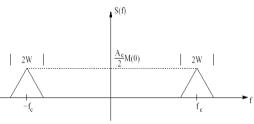

Modulación en frecuencia (FM)


PORTADORA





Portadora modulada


### Modulación DBL



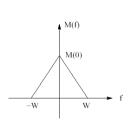


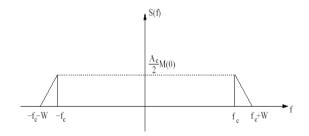




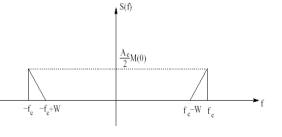




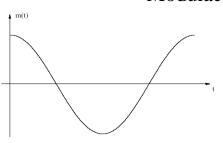


$$S_{DBL}(t) = p(t) \cdot m(t) = Ap\cos(2 \ pi \ f_{p} t) \cdot m(t)$$

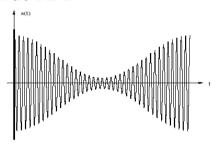

Espectro de la señal modulada DSB.

Rendimiento máximo = 50% B<sub>T</sub>=2W


Receptores más complejos

#### Modulación BLU

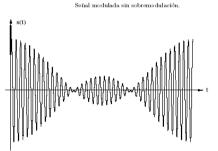



- Rendimiento máximo = 100
- $B_{T}=W$
- Circuitos muy complejos, con filtros muy difíciles dehacer.

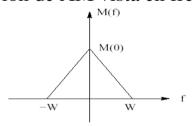


#### Modulación de AM

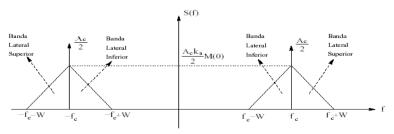





- moduladora  $m(t) = A_m \cos(2\pi f_m t)$
- portadora sin modular  $S_P(t) = Ap\cos(2\pi f_p t)$ • portadora modulada


$$\begin{split} S_{AM}(t) &= Ap \left[ 1 + k_a \cdot m(t) \right] \cos \left( 2\pi \, f_p t \right) \\ &|k_a \cdot m(t)| < 1 \quad \text{sin sobremodulación} \\ &|k_a \cdot m(t)| < 1 \quad \text{con sobremodulación} \end{split}$$

índice de modulación  $u = k_a \cdot A_m$ 

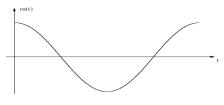


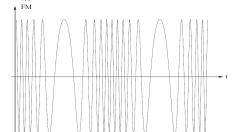

Señal modulada con sobremodulación

#### Modulación de AM vista en frecuencia



Espectro de la señal moduladora.





Espectro de la señal modulada.

$$B_T = 2W$$

Rendimiento máximo potencia = 17%

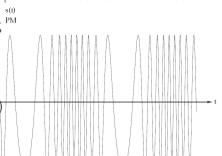
#### Modulación angular (FM/PM)





- $m(t) = A_m \cos(2\pi f_m t)$ moduladora
- portadora sin modular

$$S_{p}(t) = Ap\cos\left(2\pi f_{p} t + \theta_{p}\right)$$


- $S_P(t) = Ap\cos(2\pi f_p t + \theta_p)$  La fase instantánea es  $\theta_i(t) = 2\pi f_p t + \theta_p$
- La amplitud de la moduladora modifica la instantánea de la moduladora. modificando:
  - f<sub>n</sub> -> modulación FM

$$S_{FM}(t) = Ap\cos(2\pi f_p t + 2\pi K_f \int m(t) dt)$$

• θ -> modulación PM

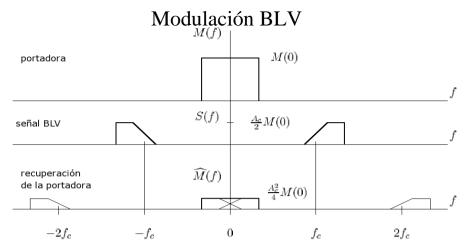
$$S_{PM}(t) = Ap\cos(2\pi f_p t + K_p m(t))$$

 $k_f y k_g = sensibilidad del modulador$ 



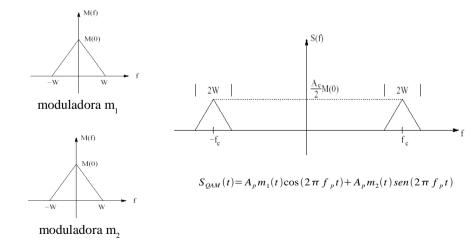
#### Modulación de FM vista en frecuencia

• Modulación en FM de un tono puro:


$$m(t) = A_m \cos(2\pi f_m t)$$

$$S_{FM}(t) = Ap\cos(2\pi f_p t + \beta sen(2\pi f_m t))$$

$$\beta = \frac{\Delta f}{f}$$
 es el índice de modulación


 $\Delta f = K_f A_m = \text{máxima desviación en frecuencia}$ 

- $\beta$  pequeño (< 0,3) -> FM de banda estrecha
  - Baja calidad (válido para telefonía inalámbrica, radioafinionado..)
  - Poco ancho de banda (aprox 2W, como AM)
  - Espectro similar a AM pero BLI cambia fase 180°
- β grande -> FM de banda ancha
  - Alta calidad (radiodifución comercial)
  - From ancho de banda:  $2 f_{m} (1+\beta)$



- A partir de DBL, por filtrado -> una banda y parte de la otra
- Rendimiento máximo cercano a 100%
- B<sub>T</sub> cercano a W
- Circuitos más sencillos que en BLU -> filtro más sencillo
- La señal "que falta" en una banda se compensa con "la que sobra" en la otra. Aparece algo de distorsión

#### Modulación en cuadratura OAM



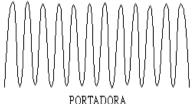
- Modulación de dos señales W
- Transmisión de las señales desfasadas 90°
- $B_T = 2W$

#### Ancho de Banda en FM

- Ancho de banda infinito
- Se considera ancho de banda según potencia (ancho de banda efectivo de transmisión)
- 98% de la potencia total.
- Regla de Carson:

$$B_T = 2(\Delta f + f_m) = 2 f_m(\beta + 1)$$

• Radiodifusión comercial

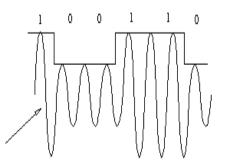

Desviación de frecuencia ->  $\Delta f_m = 75 \text{Khz}$ 

Ancho de banda de la señal 15Khz ->  $fm_{max} = 15Khz$ 

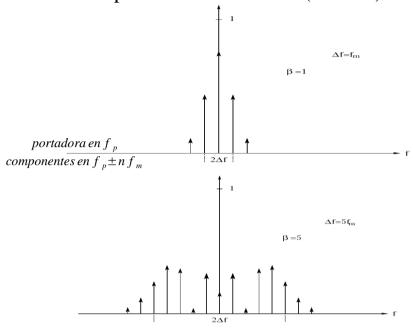

Ancho de banda (FM mono)  $B_T = 2 (75 \text{Khz} + 15 \text{Khz}) = 180 \text{Khz}$ 

#### Modulación digital con portadora analógica

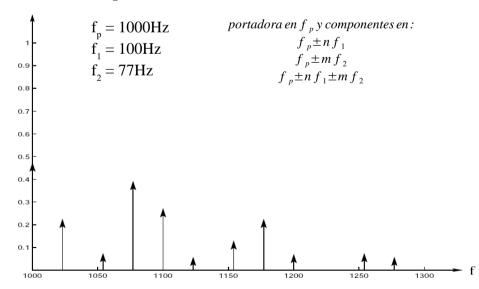
Modulación en amplitud (ASK)




PORTADORA

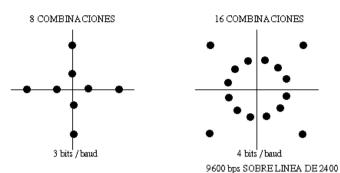



portadora modulada digitalmen






#### Espectro de la señal FM (un tono)



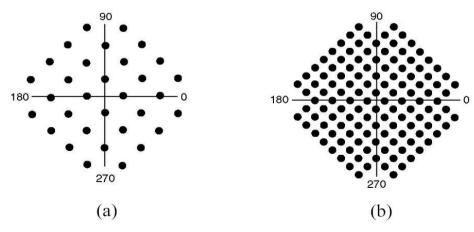

#### Espectro de la señal FM (dos tonos)



#### MODULACION HIBRIDA QAM

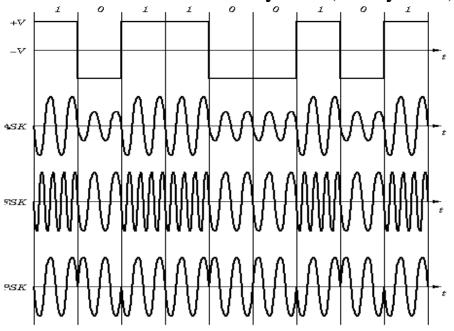
(QUADRATURE AMPLITUD MODULATION)



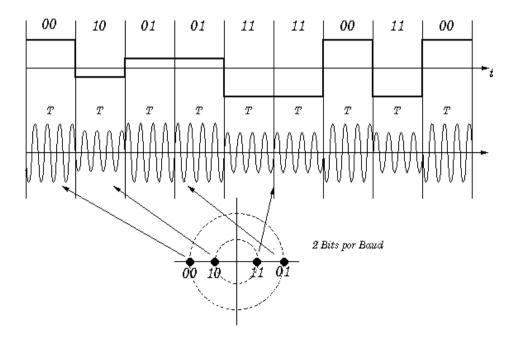

BAUD: NUMERO DE VECES QUE LA SEÑAL CAMBIA SU VALOR (VOLTAJE, FRECUENCIA, FASE)

POR SEGUNDO: 1

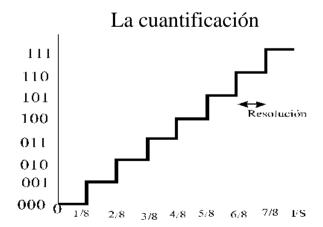
TASA BINARIA:  $R = \frac{1}{T} \log_2 M \text{ bits/seg}$ 


T: INTERVALO DE LA SEÑAL

M: NUMERO DE VALORES POSIBLES DE LA SEÑAL EN EL INTERVALO (EJEMPLO: AMPLITUD & FASE)




- (a) V.32 para 9600 bps
- (b) V32 bis para 14.400 bps


#### Modulación en frecuencia y fase (FSK y PSK)

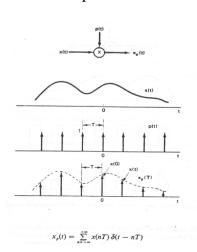


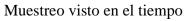
#### MODULACIÓN HÍBRIDA FASE-AMPLITUD

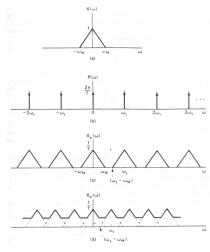






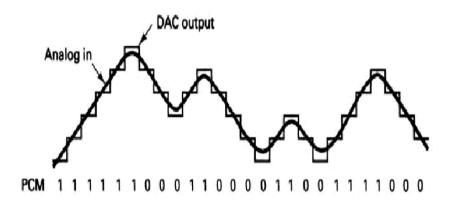

- Muestra -> cualquier amplitud
- N valores normalizados de aplitud => aproximación
  - Redondeo -> error =  $\pm \frac{1}{2}\Delta$
  - Truncamiento -> error =  $\Delta$
- Codificación -> n bits, siendo  $N=2^n$


#### Codificación

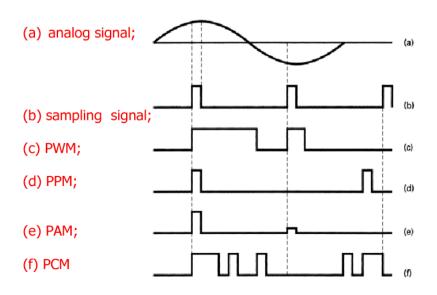

- Moduladora analógica => modulación por impulsos
  - Objetivo: Transmisión digital de señales analógicas
  - Proceso (conversión Analógico-Digital):
    - Muestreo -> discretización en amplitud => señal discreta en el tiempo.
       No hay pérdida de información
    - Cuantificación -> discretización en amplitud => señal digital. Pérdida de información
    - Codificación => formato de representación binaria
  - Tipos: PAM, PWM, PPM, delta, MIC....
- Moduladora digital => codificación
  - · Objetivos:
    - Reducir ancho de banda de la señal
    - > Eliminar componente continua
    - Sincronización
    - Detección de errores
    - Mejorar la tasa de error
  - Tipos: bifásica, multinivel, manchester, NRZ, 5B6B, HDB3, etc.

#### El muestreo

- Muestreo = discretizar en el tiempo señal analógica
- No se pierde información si fm  $\geq 2W$



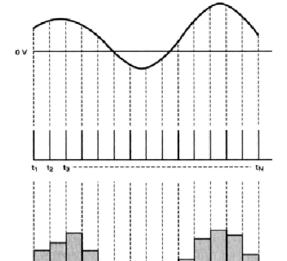



Muestreo visto en la frecuencia

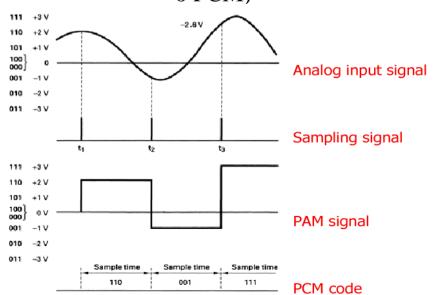
#### Modulación delta (diferencial)

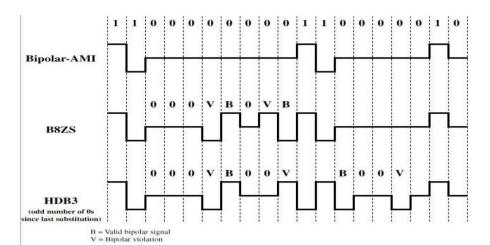



#### Modulaciones PWM y PPM



# Modulación por amplitud de pulsos (PAM)


(a) input signal;


(b) Sampling signal

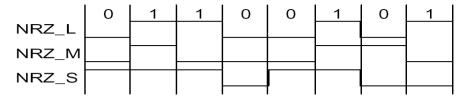


(c) PAM signal

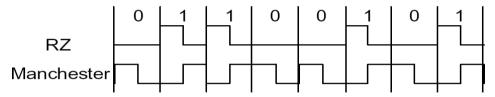
## Modulación por pulsos codificados (MIC o PCM)






- AMI -> "0" = ausencia de señal. "1" = pulso positivo o negativo (alternados)
- B8ZS (EEUU)
  - no permite 8 "0" seguidos -> genera dos violaciones de AMI (invierte polaridad)
- HDB3 (UE y Japón)
  - No permite 4 "0" seguidos -> genera una violación de AMI

#### Codificación de la información


- Representación de un dígito binario ("0" o "1") -> bit
- Representación de un rango mayor de símbolos => código:
  - Símbolos mensaje = cada uno de los símbolos representados
  - Palabras del código = cada una de las combinaciones de bits que representa a un símbolo.
  - N mensajes => como **mínimo** código n bits  $N=2^n$
  - ejemplo -> representación de los símbolos decimales (BCD)
- Fuentes de información
  - De memoria nula -> la probabilidad de cada símbolo depende sólo de ese símbolo
  - Con memoria -> la probabilidad de cada símbolo depende de los anteriores

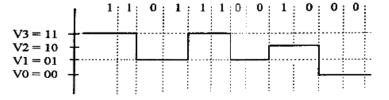
| 00  |
|-----|
| 1   |
| ' 1 |
| 0   |
| 1   |
| 0   |
| 1   |
| 0   |
| 1   |
| 0   |
| 1   |
|     |

#### Datos digitales – señales digitales



- NRZ L = bipolar "normal"
- NRZ\_M -> "1" = transición al principio del intervalo
- NRZ\_S -> "0" = transición al principio del intervalo




- RZ -> valor del bit en ½ periodo + retorno a cero en el otro medio
- Manchester -> flancos en el centro del bit: "1" = flanco subida, "0"=flanco bajada. Garantiza reloj. Duplica ancho de banda.

# Datos digitales — señales digitales Bifase\_M Bifase\_S Manchester

- Bifase\_M -> "1" = flanco de subida
- Bifase\_S -> "0" = flanco de bajada

diferencial

• Manchester diferencial -> siempre flanco en medio. "1" sin flanco al principio, "0" flanco al principio.



• Multivalente -> N niveles. Codificación n bits por transición.

- Códigos m sobre n
  - · Son códigos de m bits
  - · Sólo son válidas las combinaciones que tienen n bits a 1
  - Distancia de Hamming = 2
- Control de paridad
  - Se añade un bit de paridad
  - Distancia de Hamming = 2
  - Paridad horizontal = para cada dato transmitido
  - Paridad vertical = para todos los bits de una secuancia de datos (columnas)
  - Paridad cruzada = combinación de las dos -> distancia de Hamming
     4
- Códigos cíclicos (CRC)
  - · características
    - Detectan ráfagas de errores
    - > Tratamiento de las series de bits como polinomios
    - Utilizan un polinomio generador para la comprobación de errores

#### Proceso

- Generación
  - Se añaden al dato a transmitir tantos ceros a la derecha como el orden del polinomio generador
  - > Se divide el polinomio resultante por el polinomio generador y se obtiene el resto
  - > El resto se suma al dato a transmitir expandido con los ceros
- · Comprobación
  - El receptor divide el dato que le llega por el polinomio generador.
  - > Si el resto es 0 no hay error
  - > Si el resto no es 0 hay errores
- Polinomios cíclicos más usados
  - CRC-12 =  $x^{12} + x^{11} + x^3 + x^2 + x + 1$
  - CRC-16 =  $x^{16} + x^{15} + x^2 + 1$
  - CRC-CCITT =  $x^{16} + x^{12} + x^5 + 1$
  - · Características de los CRC16
    - > Detecta 100% errores simples, y dobles
    - Detecta 100% errores en un número impar de bits
    - Detecta 100% de los paquetes con errores de longitud menor que 18 y 99'998% de los mayores

- Códigos históricos:
  - Morse (telégrafo)
  - Baudot (teletipo) -> 5 bits + bit inicio + bit paada
- · Códigos modernos
  - EBCDIC (8 bits) -> entornos IBM
  - ASCII (7 bits) -> normalizado ANSI e ISO

| Dec Hx Oct Char                      | Dec | Нх | Oct | Html          | Chr   | Dec | Нх | Oct | Html           | Chr | Dec   | Нх   | Oct | Html Ch           | nr_ |
|--------------------------------------|-----|----|-----|---------------|-------|-----|----|-----|----------------|-----|-------|------|-----|-------------------|-----|
| 0 0 000 NUL (null)                   | 32  | 20 | 040 | 4#32;         | Space | 64  | 40 | 100 | 4#64;          | 0   | 96    | 60   | 140 | 6#96;             | *   |
| 1 1 001 SOH (start of heading)       |     |    |     | 4#33;         |       | 65  | 41 | 101 | 4#65;          | A   | 97    | 61   | 141 | 6#97;             | a   |
| 2 2 002 STX (start of text)          |     |    |     | ¢#34;         |       | 66  | 42 | 102 | 4#66;          | В   | 98    | 62   | 142 | 6#98;             | b   |
| 3 3 003 ETX (end of text)            |     |    |     | «#35;         |       | 67  |    |     | 6#67;          |     |       |      |     | «#99;             |     |
| 4 4 004 EOT (end of transmission)    | 36  | 24 | 044 | 4#36;         | ş     | 68  | 44 | 104 | 4#68;          |     |       |      |     | 6#100;            |     |
| 5 5 005 ENQ (enquiry)                |     |    |     | a#37;         |       | 69  |    |     | a#69;          |     |       |      |     | a#101;            |     |
| 6 6 006 ACK (acknowledge)            |     |    |     | 4#38;         |       |     |    |     | a#70;          |     |       |      |     | 6#102;            |     |
| 7 7 007 BEL (bell)                   |     |    |     | 4#39;         |       |     |    |     | a#71;          |     |       |      |     | 4#103;            |     |
| 8 8 010 BS (backspace)               |     |    |     | 6#40;         |       | 72  |    |     | 6#72;          |     |       |      |     | 6#104;            |     |
| 9 9 011 TAB (horizontal tab)         |     |    |     | 6#41;         |       | 73  |    |     | 6#73;          |     |       |      |     | 6#105;            |     |
| 10 A 012 LF (NL line feed, new line) |     |    |     | ¢#42;         |       | 74  |    |     | 6#74;          |     |       |      |     | %#106;            |     |
| 11 B 013 VT (vertical tab)           |     |    |     | <b>%#43</b> ; |       | 75  |    |     | 6#75;          |     |       |      |     | <pre>%#107;</pre> |     |
| 12 C 014 FF (NP form feed, new page) |     |    |     | «#44;         |       | 76  |    |     | 6#76;          |     |       |      |     | <b>%#108;</b>     |     |
| 13 D 015 CR (carriage return)        |     |    |     | a#45;         |       | 77  |    |     | 6#77;          |     |       |      |     | 6#109;            |     |
| 14 E 016 SO (shift out)              |     |    |     | a#46;         |       | 78  |    |     | 6#78;          |     |       |      |     | a#110;            |     |
| 15 F 017 SI (shift in)               |     |    |     | 6#47;         |       | 79  |    |     | 6#79;          |     |       |      |     | 6#111;            |     |
| 16 10 020 DLE (data link escape)     |     |    |     | 4#48;         |       |     |    |     | 4#80;          |     |       |      |     | 6#112;            |     |
| 17 11 021 DC1 (device control 1)     |     |    |     | 6#49;         |       | 81  |    |     | 4#81;          |     |       |      |     | 6#113;            |     |
| 18 12 022 DC2 (device control 2)     |     |    |     | a#50;         |       | 82  |    |     | 4#82;          |     |       |      |     | 6#114;            |     |
| 19 13 023 DC3 (device control 3)     |     |    |     | 3             |       |     |    |     | 4#83;          |     |       |      |     | 6#115;            |     |
| 20 14 024 DC4 (device control 4)     |     |    |     | <b>%#52</b> ; |       |     |    |     | 4#8 <b>4</b> ; |     |       |      |     | %#116;            |     |
| 21 15 025 NAK (negative acknowledge) |     |    |     | <b>%#53</b> ; |       | 85  |    |     | 6#85;          |     |       |      |     | 6#117;            |     |
| 22 16 026 SYN (synchronous idle)     |     |    |     | <b>%#54</b> ; |       |     |    |     | 6#86;          |     |       |      |     | 6#118;            |     |
| 23 17 027 ETB (end of trans. block)  |     |    |     | a#55;         |       | 87  |    |     | 6#87;          |     |       |      |     | 6#119;            |     |
| 24 18 030 CAN (cancel)               |     |    |     | a#56;         |       |     |    |     | €#88;          |     |       |      |     | a#120;            |     |
| 25 19 031 EM (end of medium)         |     |    |     | 4#57;         |       | 89  |    |     | 4#89;          |     |       |      |     | 6#121;            |     |
| 26 1A 032 SUB (substitute)           |     |    |     | 4#58;         |       | 90  |    |     | 6#90;          |     |       |      |     | 6#122;            |     |
| 27 1B 033 ESC (escape)               |     |    |     | 4#59;         |       | 91  |    |     | 6#91;          |     |       |      |     | 6#123;            |     |
| 28 1C 034 FS (file separator)        |     |    |     | 4#60;         |       | 92  |    |     | 6#92;          |     |       |      |     | 6#124;            |     |
| 29 1D 035 GS (group separator)       | 61  |    |     | <b>%#61;</b>  |       | 93  |    |     | 6#93;          |     |       |      |     | 6#125;            |     |
| 30 1E 036 RS (record separator)      |     |    |     | «#62;         |       |     |    |     | «#9 <b>4</b> ; |     |       |      |     | %#126;            |     |
| 31 1F 037 US (unit separator)        | 63  | 3F | 077 | <b>%#63</b> ; | 2     | 95  | 5F | 137 | 6#95;          | _   | 127   | 7F   | 177 | 6#127;            | DEI |
|                                      |     |    |     |               |       |     |    |     |                | S   | ource | : wv | w.a | sciitable.        | com |

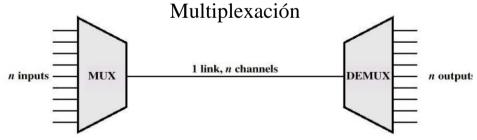
#### Códigos detectores y correctores de error

- Redundancia de un código
  - Redundancia = diferencia entre la información máxima que puede generar una fuente y la que realmente genera
  - · Redundancia de un código -> uso de más bits de los "necesarios"
  - bits de código (cod. binario) > bits de información (Shannon)
  - · Distancia de hamming
    - D. H. entre dos combinaciones binarias = nº de bits que hay que cambiar para pasar de una a otra.
    - D. H. de un código = D.H. mínima entre combinaciones
    - > D.H. > 1 => redundancia
- Códigos detectores y correctores de error
  - Un error de n bits es detectable por un código con distancia n
  - Y corregible por un código de distancia 2n + 1

# Cifrado de datos Clave Clave SISTEMA DE CIFRADO Intruso CIGRADO CIGRA

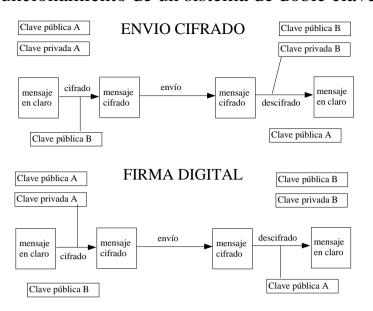
Esquema de transmisión segura de un mensaje

- Claves iguales -> Algoritmos simétricos (DES, IDEA, AES)
- Claves diferentes -> Algoritmos asimétricos (RSA, D-H, PKCS)
- Data Encryption Standard (DES)
  - Estándar americano de 1977
  - clave de 56 bits sobre bloques de datos de 64 bits-> con la tecnología de la época se tardaban 2200 años en romper la clave, hoy 3 días.
- International Data Encryption Algorithm (IDEA)
  - Tuvo su aparición en 1992.
  - Considerado por muchos el mejor y más seguro algoritmo simétrico disponible en la actualidad.
  - Trabaja con bloques de 64 bits de longitud, igual que el DES, pero emplea una clave de 128 bits.
  - Se usa el mismo algoritmo tanto para cifrar como para descifrar.
    - Advanced Encryption Standard (AES)
      - Publicado el 2 de Octubre de 2000.
      - Se intuye que substituirá al actual D.E.S.
      - El tamaño de clave debe ser de, al menos, 128, 192 y 256 bits (debe admitir los tres), y el tamaño de bloque de cifrado debe ser de 128 bits.
      - Los productos que incorporen AES podrán ser exportados fuera de EE.UU.
  - Algoritmos asimétricos
    - · Cada usuario tiene un par de claves:
      - Clave privada -> debe ser secreta
      - Clave pública -> puede difundirse a todo el mundo.
    - Sirve para que:
      - Otros usuarios le envien documentación cifrada
      - > El propietario de la clave envíe documentación "firmada"


#### Compresión de datos

- Dos tipos de técnicas:
  - Sin pérdidas -> información almacenada = original
  - Con pérdidas -> información comprimida ≠ original
- Compresión sin pérdidas
  - Basada en eliminar la redundancia => 1bit = 1 Shannon
  - Códigos
    - Símbolos no equiprobables (p.e. letras).
    - Dependen de los anteriores.
    - Agrupaciones en bloques -> también dependen unas de otras
    - Ejemplo: "ME LLEVO EL PARAGUAS PORQUE ESTA LLOVIENDO"
  - · Tipos:
    - Compresores estadísticos -> basados en la probabilidad de un símbolo: codificación con nº de bits menor según probabilidad
    - > Compresores basados en diccionario -> estudian secuencias repetidas.

- Compresión con pérdidas
  - En sistemas donde se pueden tolerar diferencias (p.e. audio)
  - · Basadas en:
    - Medidas de la percepción -> puede no notarse diferencia
    - Filtrado -> selección del espectro donde está la mayor parte de la potencia.
    - Redundancia temporal -> "lentitud" de variación en la imagen/señal
    - Uso de compresión sin pérdidas
- Ejemplos (algoritmos):
  - · Sin pérdidas
    - Estadísticos
      - Shannon-Fano (no óptimo): Se usa en ZIP
      - Huffman (óptimo): Se usa en LZH, BZIP2
      - Basados en diccionario
        - Familia LZ78 (Lempel-Ziv 78): LZW, LZC (compress), GIF, V42bis
        - ✓ Familia LZ77 (Lempel-Ziv 77): ZIP, LZH
  - Con pérdidas: MPEG (audio), JPEG (imagen), MPEG-1, MPEG-2, MPEG-4 (video)


#### Sistemas de doble clave

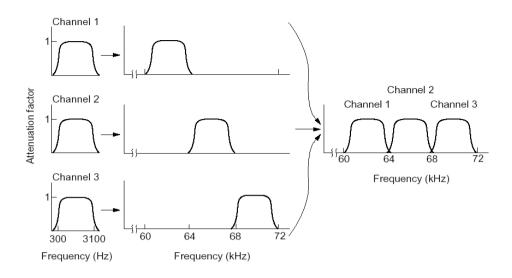
- Diffie-Hellman
  - Algoritmo histórico (1976)
  - Precursor de RSA
  - > Es vulnerable en algunos supuestos
- PKCS (Publick-key Cryptografy Standards)
  - 15 estándads basados en RSA.
- · Funciones de hash
  - Son funciones unidereccionales de resumen -> generan una cadena de resumen de un documento ("no puede haber" dos cadenas de resumen iguales)
  - MD5 (128 bits), SHA-1(160 bits), RIPEMD(160 bits), etc.
- · Protocolos de seguridad
  - Utilizan funciones de hash y sistemas de doble clave para trasnferir información de forma segura
  - PGP, SSL, SET, IPSEC, etc.



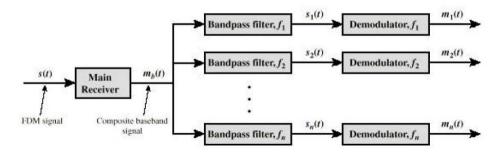
- Objetivos -> compartir el medio
  - Un solo cable frente a muchos cables
  - Posibilidad de trasnmisión de varias señales donde de otro forma no se podría (p.e. por el aire)
  - Aprovechamiento del ancho de banda
- Tipos
  - Multiplexación por división en frecuencias (FDM).
  - Multiplexación por division en tiempo (TDM síncrona).
  - Multiplexación estadística por división en el tiempo (TDM estadística, asíncrona o inteligente).

#### Funcionamiento de un sistema de doble clave



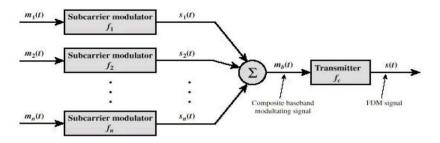

#### Sistemas de doble clave

#### • Propiedades

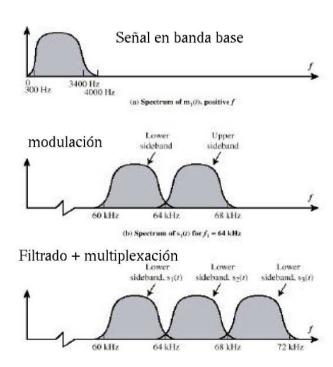

- Algoritmos asimétricos
- Válidos para encriptar y firmar
- Tiempos de cálculo muy altos => sólo se firma un extracto.
- · Necesidad de autoridades certificadoras para las firmas:
  - Fábrica Nacional de Moneda y Timbre
  - > Agencia de Certificación Electrónica
  - Verisign
  - > .....

#### Algoritmos de cifrado

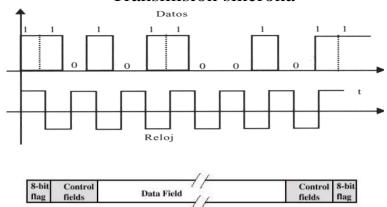
- RSA
  - Basado en la utilización de un número producto de dos números primos grandes => producto=clave públlica, factorización=clave privada.
  - Claves de tamaño variable, típicos 512 o 1024bits. Bloques variables, menores que la clave
  - Muy seguro. Se usa en ssh




#### Recuperación de la señal




- Filto P.Banda-> elimina todo menos un canal
- Demodulador -> desplaza a frecuencia baja => banda de base
- Problemas
  - Diafonía si los espectros de señales adyacentes se solapan demasiado.
  - Intermodulación en enlaces largos. Los amplificadores de un canal podrían generar frecuencias en otro canal.

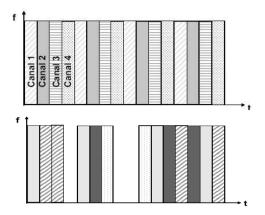

#### Modulación por división en frecuencia (MDF)



- Modulación -> desplazamiento de la señal a frecuencias altas
- Multiplexación -> suma de varias señales moduladas a frecuencias distintas
- Señales limitadas en banda => no hay solapamiento
- Válido para trasnmisión analógica y digital
- Ancho de banda total = suman anchos de banda

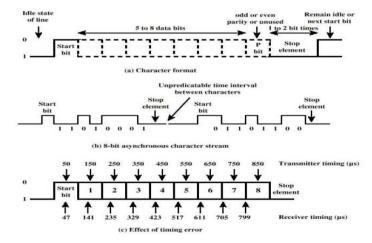


#### Transmisión síncrona



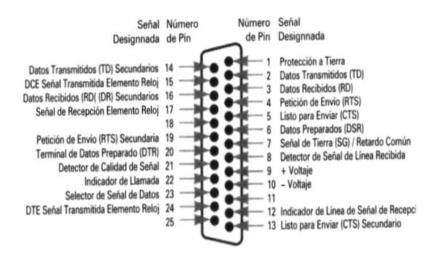

- Reloj
  - Por linea aparte
  - Incluido en la codificación (p.e. manchester)
- Menor sobrecarga de bits de control que en t. asíncrona.

#### Transmisión serie/paralelo


- Transmisión serie
  - · Bit a bit
  - · Menos hilos
  - Mayor complejidad: necesidad de una protocolo
  - · Transmisión a larga distancia
- Transmisión paralelo
  - Varios bits a la vez
  - · Mayor nmero de hilos
  - · Más simple, sin protocolo o protocolo más sencillo
  - Transmisión a corta distancia

#### Multiplexación por división en el tiempo (MDT)

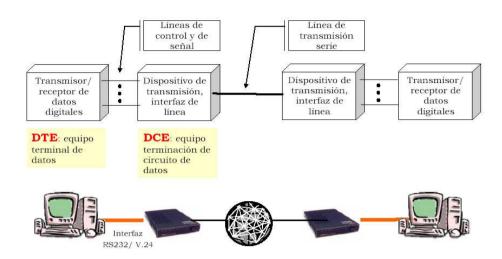



- Asignación de intervalos de canal (slots) a los distintos canales.
- MDT síncrona -> asignación fija de intervalos de canal => desperdicio de ancho de banda
- MDT asíncrona -> asignación variable según las necesidades => hay que identificar canales

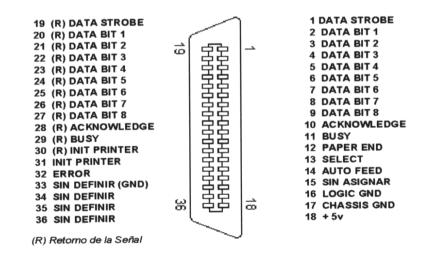
#### Transmisión asíncrona



- Relojes distintos
- Errores de sincronización -> cadenas cortas.


#### Interfaz RS-232




#### Señales RS-232 en un conector PC de 9 pines

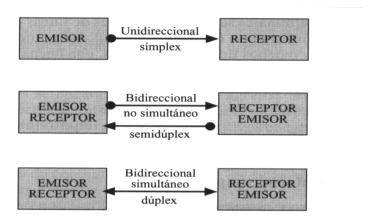
| PIN | SEÑAL | NOMBRE              | FUNCIÓN                                                |
|-----|-------|---------------------|--------------------------------------------------------|
| 1   | DCD   | Data Carrier Detect | Detección de portadora                                 |
| 2   | RD    | Received Data       | Entrada de datos en el DTE                             |
| 3   | TD    | Transmitted Data    | Salida de datos del DTE                                |
| 4   | DTR   | Data Terminal Ready | DTE preparado y listo. Pone en funcionamiento al módem |
| 5   | GND   | Masa                | Masa del circuito                                      |
| 6   | DSR   | Data Set Ready      | ETCD está listo para comunicar con DTE                 |
| 7   | RTS   | Request To Send     | DTE desea cambiar a modo de transmisión                |
| 8   | CTS   | Clear To Send       | ETCD está listo para transmitir                        |
| 9   | RI    | Ring Indicator      | Aviso de llamada detectada                             |

#### Interfaces para las comunicaciones de datos



#### **Interfaz Centronics**




#### Clasificación de los protocolos

- Según las unidades de datos con las que trabajan
  - Protocolos orientados a carácter -> década de los 60
  - Protocolos orientados a bit -> modernos
- Según su forma de sincronización -> síncronos / asíncronos
- Según el control sobre el medio
  - · Balanceados o simétricos:
    - los dos extremos trabajan igual.
    - Cada uno puede tomar la iniciativa de la comunicación
  - No balanceados a asimétricos
    - Una estación primaria (maestra) y las demás secundarias (esclavas)
    - La estación primaria emite y/o da turnos de palabra para emitir
    - La estación secundaria recibe o espera su turno para emitir
  - Híbridos

- Según utilicen o no sondeo
  - Protocolos de sondeo-selección
    - Sondeo = la estación primaria pide información a la secundaria
    - Selección = la estació primaria envía información a la estación secundaria
    - El proceso se controla con señales:
      - Sondeo = petición de información
      - Selección = aviso de envio de información
      - ACK = validación
      - NAK = no validación
      - ✓ EOT = fín de transmisión
  - Protocolos sin sondeo: no realizan sondeo
    - Control de flujo hardware: RTS/CTS
    - Control de flujo software: XON/XOFF

-

#### Modos de diálogo



#### Protocolos de comunicación

- Protocolo = conjunto de normas que hacen posible la comunicación entre dos o más nodos.
- Funciones más importantes de un protocolo:
  - Establecimiento y fin de la comunicación
  - Sincronización de la comunicación -> a nivel de bit, de palabra y de trama.
  - · Direccionamiento -> identificación de los nodos
  - Control de flujo y de congestión -> permitir a la rede compartir sus recursos entre varios nodos dando servicio a todos.
  - Control de errores -> códigos y sistemas para la detección y recuperación de errores.
  - Estrategias de encaminamiento -> utilización de los recursos de la red de forma óptima, caminos alternativos, etc.
- Arquitectura de protocolos
  - · Procesos independientes
  - Implementación por software o hardware
  - · Estructura en capas.

## Desperdicio de tiempo de canal en protocolos de parada y espera



#### Protocolos con ventana deslizante



#### • Según utilicen o no prioridades

- · Sistemas sin prioridad
  - MUX-MDT (Multiplex por división en el tiempo)
    - El canal se divide en intervalos de tiempo
    - Se asigna un intervalo a cada estación
  - CSMA/CD (acceso múltiple por detección de portadora y detección de colisiones)
    - Todas las estaciones pueden utilizar el canal cuando está libre
    - Una estación escucha a ver sie l canal está libre, y si está libre transmite
    - Si dos estaciones empiezan a emitir a la vez se produce una colisión.
       Cada estación corta el envío y espera un tiempo aleatorio antes de empezar a enviar de nuevo
    - El rendimiento se degrada en sistemas con mucho tráfico por el aumento de las colisiones
  - Paso de testigo
    - Se ransmite por la red un testigo
    - Sólo la estación que tiene el testigo puede transmitir

#### · Sistemas con prioridad

- CSMA/CD con prioridad
  - El tiempo de espera después de una colisión no es aleatorio sino que se fija para cada estación, menor cuanto mayor sea la prioridad de la estación
- Paso de testigo con prioridad
  - El paso del testigo no se hace por turnos, sino que se puede reservar por las estaciones según su prioridad

#### • Protocolos de ventana deslizante

- En protocolos normales (parada y espera) el canal permanece sin utilizar mientras se espera la validación del receptor
- Los protocolos de ventana deslizante permiten enviar varias tramas sin esperar validación y validarlas luego todas a la vez
- Llevan un contador de tramas transmitidas

- Inicio de la transmisión -> receptor envía ACK indicando que está preparado para recibir
- Transmisión:
  - · El emisor envía un dato
  - Si el receptor lo recibe bien envía ACK
  - Si hay error de secuencia en vía CAN -> corta la transmisión
  - Si hay otro error envía NACK -> el emisor reenvía la trama
- Fín de la transmisión -> el emisor envía EOT

#### Protocolo kermit

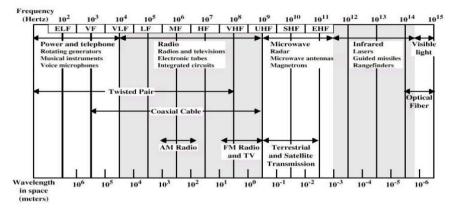
- Protocolo para transferencia de archivos entre ordenadores (no PCs) a través del módem
- Protocolo de parada y espera, serie, asíncrono
- Tramas de longitud variable:

| Mark Long | no | Tipo | DATOS | Check |
|-----------|----|------|-------|-------|
|-----------|----|------|-------|-------|

- mark (1 byte) = cabecera (secuencia irrepetible)
- ► long (1 byte) = longitud de la trama
- → no (1byte)= número de secuencia de la trama
- ► tipo = tipo de trama
- DATOS (longitud variable)
- ► Check (1,2,3 byte) = puede ser check o CRC

- Clasificación según el nivel (OSI):
  - Protocolos de nivel físico (1)
  - Protocolos de nivel de enlace (2)
  - Protocolos de nivel de red (3)
  - Protocolos de nivel de transporte (4)
  - Protocolos de nivel de sesión (5)
  - Protocolos de nivel de presentación (6)
  - Protocolos de nivel de aplicación (7)

#### Protocolo XMODEM


- Protocolo para transferencia de archivos entre PC's a través del módem
- Protocolo de parada y espera, serie, asíncrono
- Tramas de longitud fija:

| SOH | No | C1 | DATOS | Checksum |  |
|-----|----|----|-------|----------|--|
| ,   |    | no |       |          |  |

- SOH = cabecera (carácter 1 ASCII)
- > no (1byte)= número de secuencia del paquete
- C1 no (1byte)= nº secuencia en complemento a 1
- > DATOS (128 bytes)
- Checsum (1 byte) = suma de todos los bytes de datos

#### Medios de transmisión

- Tipos de medios:
  - Guiados -> par trenzado, cable coaxial y fibra óptica
  - No guiados -> atmósfera o espacio exterior (infrarrojos, radioenlaces, satelite, radio)
- Espectro electromagnético y uso de los distintos medios



#### Par trenzado

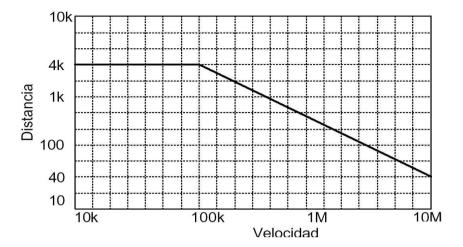
- Características
  - Inicialmente pensado para telefonía: común y económico.



- Dos conductores aislados y trenzados.
  - > Van trenzados para evitar que hagan de antenas.
  - Poca protección frente a interferencias.
  - → Resistencia → Diámetro → Ancho de banda.
  - > Blindaje.
  - Normalización: American Wire Gauge.

| Calibre (AWG) | 19    | 22    | 24    | 26    | 28    |
|---------------|-------|-------|-------|-------|-------|
| Diámetro (mm) | 0.912 | 0.644 | 0.511 | 0.405 | 0.320 |

- Permite la transferencia de archivos entre diferentes sistemas
- Sólo presupone que los sistemas son capaces de enviar caracteres imprimibles (20h-7Fh ASCII)
- Lós "códigos de control" son tramas en vez de caracteres
- Tramas de longitud variable
- El protocolo incluye el nombre del fichero
- Permite negociar parámetros de la comunicación
- Permite versiones de ventana deslizante (nº de secuencia en tramas ACK y NACK)
- Permite transferir múltiples ficheros


#### Protocolo HDLC

- Protocolo orientado a bit, sínrono, punto a punto o multipunto, de ventana deslizante.
- Estandar ISO.
- Permite explotación duplex del enlace.
- Permite la transmisión de cualquier tipo de datos.
- Permite enlaces equilibrados y no equilibrados.
- Trama:

| • |      |     |       |       |     |      |
|---|------|-----|-------|-------|-----|------|
| • | Band | Dir | Cntrl | DATOS | FCS | Band |

- Bandera = 011111110
- Dirección (8bits) = identifica estación (multipunto)
- Control (8bits) = tipo de trama, etc
- DATOS = cualquier número de bits
- FCS (16 bits) = control de errores

Distancia máxima -> inversamente proporcional a la velocidad.



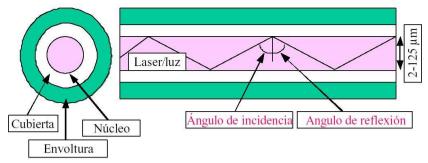
#### Cable coaxial

- Dos conductores concéntricos.
- Señales TV, redes locales (Ethernet).
- Características
  - Menor atenuación -> repetidores cada Km o hasta decenas de Km, según frecuencia
  - Mejor respuesta en frecuencia.
  - Inmunidad al ruido.
  - Mayor ancho de banda que cable de pares
  - Más caro y pesado.
- Denominación: RG xx X/U (norma MIL C-17 E)



- Composición
  - Dos o cua
  - Cables multipares -> de 6 a 2200 pares.
- Tipos
  - No apantallados (UTP)
  - Apantallados (STP)








Apantallado STP.

| Diámetro | 0.40 | 0.50 | 0.65 | 0.80 | 0.90 |  |
|----------|------|------|------|------|------|--|
| Ohms/Km  | 143  | 91.4 | 54.5 | 35.7 | 28.2 |  |

- Cables UTP
  - Categoría 1: Telefonía, transporte de voz (< 1Mbps)
  - Categoría 2: Datos hasta 4 Mbps. Token Ring a 4 Mbps.
  - · Categoría 3: Datos hasta 10 Mbps. Ethernet 10base-T. 3-4 vueltas/pie.
  - Categoría 4: Token-Ring, Token-bus y 10base-T, 20MHz.
  - Categoría 5: Datos hasta 100 Mbps (Fast-Ethernet).
  - Redes 100baseT y 10baseT.
  - Hasta 100MHz
  - 3-4 vueltas/pulgada.



- Angulo de incidencia menor que un cierto ángulo => reflexión
- Según la anchura del núcleo
  - Fibras multimodo (anchura del nucleo mucho mayor que la longitud de onda de la portadora) -> varios modos de propagación
  - Fibras monomodo (anchura del nucleo cercana a la longitud de onda de la portadora)-> un solo modo de propagación



#### Dispersión en la fibra



- Tipos de dispersión
  - Dispersión modal -> la luz viaja por distintos caminos (distintas longitudes) => depende de la fibra
  - Dispersión espectral -> las distintas longitudes de onda de la luz sufren distintos retardos => depende de la fuente de luz.
- Tipos de fuentes de luz
  - LED -> luz poco coherente => uso en fibras multimodo en la primera ventana
  - ILD (Injection Laser Diode) -> luz coherente => uso en fibras monomodo en la segunda y tercera ventanas.
- Detectores => fotodiodos polarizados en inverso

- Coaxial fino: RG 58 C/U
  Impedancia: Z=50ohm.
  - Capacidad C=101 pF/m
  - Veloc. Propagación = 66% (5ns/m)
  - Tensión máxima U=1.9 KV

Atenuación (a 20°C)

| MHz     | 10  | 50 | 100 | 200 | 400 | 1000 |
|---------|-----|----|-----|-----|-----|------|
| dB/100m | 4.9 | 12 | 17  | 26  | 38  | 65   |

| Coaxial tipo | Capacidad<br>(pF/m) | Velocidad propag.(%) | Vmáx<br>(KV) | ATENUACIÓN (dB/100m) a Mhz. |      |      |      |      |      |
|--------------|---------------------|----------------------|--------------|-----------------------------|------|------|------|------|------|
|              |                     |                      |              | 10                          | 50   | 100  | 200  | 400  | 1000 |
| RG 174A/U    |                     | 66                   | 1'5          | 12'8                        | 23   | 29'2 | 39'4 | 61   | 98'4 |
| RG 122/U     | 101                 | 66                   | 1'9          | 5'9                         | 14'2 | 23   | 36'1 | 56   | 95'2 |
| RG 58 C/U    | 101                 | 66                   | 1'9          | 4'9                         | 12   | 17   | 26   | 38   | 65   |
| RFA 223/U    | 101                 | 66                   | 1'9          | 4'3                         | 10   | 14   | 30   | 29   | 45   |
| RG 223/U     | 101                 | 66                   | 1'9          | 3'9                         | 9'5  | 15'8 | 23   | 33   | 54'2 |
| RG 213 /U    | 101                 | 66                   | 5            | 2                           | 4'9  | 7    | 10'5 | 15'5 | 26   |
| RG 9 B/U     | 101                 | 66                   | 5            | 2'2                         | 5'4  | 7'6  | 11'5 | 17'5 | 30   |
| RG 21 4/U    | 101                 | 66                   | 5            | 2'2                         | 5'4  | 7'6  | 10'9 | 17   | 28'9 |
| RG 21 8/U    | 101                 | 66                   | 11           | 0'75                        | 1'8  | 3    | 4'6  | 7    | 12   |
| RG 177 /U    | 101                 | 66                   | 11           | 0'78                        | 1'8  | 3'1  | 4'6  | 7'9  | 14'5 |

#### Fibra óptica

- Formado por una o varias hebras de cristal o plástico.
- Transmisión por luz infrarroja
  - Ventana de 850nm -> distancias cortas y medias
  - Ventana de 1300nm -> distancias largas, menor atenuación
  - Ventana de 1550 nm -> distancias largas, menor atenuación
- Reflexión de la luz
- Propiedades.
  - Gran ancho de banda (hasta 2Gbps)
  - Baja atenuación.
  - Inmunidad ruido electromagnético.
  - Baja potencia.
  - Poco peso y tamaño.
  - Transmisión al larga distancia (decenas de Km)
  - Necesidad de conversiones electricidad/luz





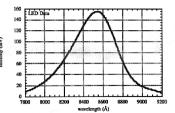
#### Transmisión por radio

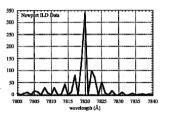
- Bandas de frecuencia VLF-UHF (aprox 50Khz 3Ghz)
- Transmisión omnidireccional
- Antenas monopolares o dipolares ½λ ¼λ
- Transmisión
  - · Bajas frecuencias
    - > Ondas terrestres -> poca atenuación por obstáculos (larga distancia)
    - Poco ancho de banda
  - · Altas frecuencias
    - > Ondas espaciales (propagación en línea recta) -> gran atenuación
    - Mucho mayor ancho de banda
- Usos:
  - Radiodifusión comercial (AM, FM..)
  - Televisión
  - Telefonía móvil
  - Radiocomunicación (Banda Ciudadana, 2metros,...)
  - Varios (telecontrol, telemando, telemedida, servicio móvil marítimo, radiobalizas, RLAN/WiFi, etc.)



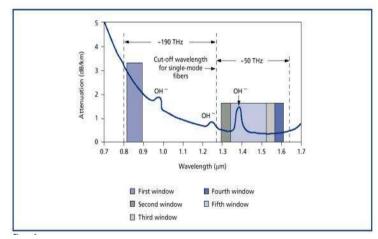
- Enlaces via radio -> microondas (1-40Ghz, λ=30cm-1mm)
- Propagación en línea recta hasta 30-50Km (punto a punto)
- Mucha atenuación por obstáculos => visión directa
- Antenas de tamaño varias veces λ
- Haz muy direccional: entre 1° y 5° -> parabólicas
- No son necesarios permisos para "utilizar el aire"
- Problemas con la difracción en el aire y el agua.
- Muy gran ancho de banda (mayor a mayor frecuencia)

#### Fuentes de luz


#### • LED


- Luz poco coherente => distintas velocidades de propagación.
- Baja potencia => menor alcance
- · Bajo coste

#### • ILD


- Luz mucho más coherente => menor dispersión espectral
- Alta potencia => más alcance
- Mayor coste

| Características    | LED            | Laser           |
|--------------------|----------------|-----------------|
| Ancho espectral    | 20-60 nm       | 0.5-6 nm        |
| Corriente          | 50 mA          | 150 mA          |
| Potencia de salida | 5 mW           | 100 mW          |
| Velocidad          | 100 MHz        | 2 GHz           |
| Tiempo de vida     | 10,000 hrs.    | 50,000 hrs.     |
| Costo              | \$1.00- \$1500 | \$100 - \$10000 |



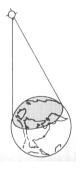


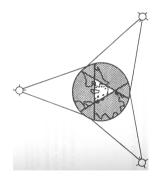
#### Pérdidas en la fibra



- Pérdidas -> dependen de la frecuencia de la portadora
- Segunda y tercera ventana -> menos pérdidas => transmisión a larga distancia.

#### • Tipos


- Satélite pasivo
  - Refleja la señal de radio procedente de la tierra
  - > Señal ascendente y descendente de la misma frecuencia
- · Satélite activo
  - Recibe la señal, la amplifica y la envía
  - > Frecuencias ascendente y descendente distintas.


#### Frecuencias

- 30Mhz 40Ghz
- Distintas bandas para distintas aplicaciones

#### Usos

- Transmisión a larga distancia
- GPS
- · Telefonía por satélite
- Aplicaciones espaciales
- Usos militares





#### Satélites geoestacionarios

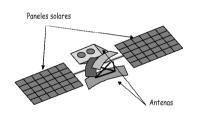
- Satélite mantiene altura si peso = fuerza centrífuga => velocidad
- A 36.000Km de altura velocidad = 1 vuelta cada 24h => igual que la tierra => posición "fija"
- Un satélite geoestacionario cubre casi la mitad de la tierra.

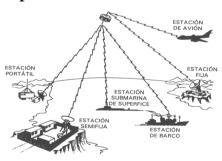
#### Antenas usadas en los radioenlaces



Pantalla para reducir lóbulos laterales










#### Transmisión por satélite





#### Características

- Eluden barreras naturales
- Alcance todo el planeta (sin necesidad de otras infraestructuras)
- Retardos de propagación (señal viaja 72.000km)
- · Atenuación por lluvia, nieve, etc.
- Interferencias de radio, microoondas, etc.
- Costes de lanzamiento muy altos, pero rentable para trasnsmisiones a muy larga distancia
- · Gran ancho de banda