zLattice

= Semiconductor
= Corporation

ABEL-HDL Reference
Manual

Version 8.0

Technical Support Line: 1- 800-LATTICE
DSNEXP-ABL-RM Rev 8.0.2

Copyright

This document may not, in whole or part, be copied, photocopied, reproduced,
translated, or reduced to any electronic medium or machine-readable form without
prior written consent from Lattice Semiconductor Corporation.

The software described in this manual is copyrighted and all rights are reserved by
Lattice Semiconductor Corporation. Information in this document is subject to change
without notice.

The distribution and sale of this product is intended for the use of the original
purchaser only and for use only on the computer system specified. Lawful users of
this product are hereby licensed only to read the programs on the disks, cassettes, or
tapes from their medium into the memory of a computer solely for the purpose of
executing them. Unauthorized copying, duplicating, selling, or otherwise distributing
this product is a violation of the law.

Trademarks
The following trademarks are recognized by Lattice Semiconductor Corporation:

Generic Array Logic, ISP, ispANALYZER, ispATE, ispCODE, ispDCD,
iISpPDOWNLOAD, ispDS, ispDS+, ispEXPERT, ispGDS, ispGDX, ispHDL, ispJTAG,
ispSmartFlow, ispStarter, iSpSTREAM, ispSVF, ispTA, ispTEST, ispTURBO,
iISpVECTOR, ispVerilog, ispVHDL, ispVM, Latch-Lock, LHDL, pDS+, RFT, and Twin
GLB are trademarks of Lattice Semiconductor Corporation.

E2CMOS, GAL, ispGAL, ispLSI, pDS, pLSI, Silicon Forest, and UltraMOS are
registered trademarks of Lattice Semiconductor Corporation.

Project Navigator is a trademark of Data 1/0O Corporataion. ABEL-HDL is a registered
trademark of Data I/O Corporation.

Microsoft, Windows, and MS-DOS are registered trademarks of Microsoft
Corporation.

IBM is a registered trademark of International Business Machines Corporation.
Lattice Semiconductor Corporation
5555 NE Moore Cit.
Hillsboro, OR 97124
(503) 268-8000

March 2003

ABEL-HDL Reference Manual 2

Limited Warranty

Lattice Semiconductor Corporation warrants the original purchaser that the Lattice
Semiconductor software shall be free from defects in material and workmanship for a
period of ninety days from the date of purchase. If a defect covered by this limited
warranty occurs during this 90-day warranty period, Lattice Semiconductor will repair
or replace the component part at its option free of charge.

This limited warranty does not apply if the defects have been caused by negligence,
accident, unreasonable or unintended use, modification, or any causes not related to
defective materials or workmanship.

To receive service during the 90-day warranty period, contact Lattice Semiconductor
Corporation at:

Phone: 1-800-LATTICE
E-mail: techsupport@Ilatticesemi.com

If the Lattice Semiconductor support personnel are unable to solve your problem over
the phone, we will provide you with instructions on returning your defective software
to us. The cost of returning the software to the Lattice Semiconductor Service Center
shall be paid by the purchaser.

Limitations on Warranty

Any applicable implied warranties, including warranties of merchantability and fithess
for a particular purpose, are hereby limited to ninety days from the date of purchase
and are subject to the conditions set forth herein. In no event shall Lattice
Semiconductor Corporation be liable for consequential or incidental damages
resulting from the breach of any expressed or implied warranties.

Purchaser’s sole remedy for any cause whatsoever, regardless of the form of action,
shall be limited to the price paid to Lattice Semiconductor for the Lattice
Semiconductor software.

The provisions of this limited warranty are valid in the United States only. Some states
do not allow limitations on how long an implied warranty lasts, or exclusion of
consequential or incidental damages, so the above limitation or exclusion may not

apply to you.

This warranty provides you with specific legal rights. You may have other rights which
vary from state to state.

ABEL-HDL Reference Manual 3

Table of Contents

PrefaCe . 10
Whatisinthis Manual 11
Where to Look for Information 11
Documentation CONVENLIONSt e e e 12
Related DocumeNntation 13
Chapter 1 Language Structure 14
SUMMAIY . . oo e e e e e e e e e e e 14
Introduction to ABEL-HDL 15
BasSIC SYNtaXot e 15
Supported ASCII CharacCters 16
dEentifierS . . o 16
Reserved ldentifiers (Keywords).o e 18
Choosing Identifiers 18

CONS AN . . . oo 19
BlOCKS . . . oot 19
Using Blocks in LOgiC DeSCriptioNS oo oot 20

Using Blocks for State Diagram Transitions 21
COMMENES . . . 21
NUMD IS . . o 22
SN S . . 24
Operators, Expressions, and EQUAtiONS. oottt 24
Logical Operatorsot 25
ArthmetiC OPEeratorS 25
Relational Operators. e 26
ASSIgNMENt OPEIatOrSottt e e 27
EXPreSSIONS. . o o 29
EQUAtiONS 31
Equation Blocks 32

SIS L 33
St INAEXING . . ot 33

Set OPeratiONSot 34

Set Assignment and COMPArISONttt et e 35

Set Evaluation. 37
Example EQUatiONS 38
SetOperation RUIES 38
Limitations/ ReStrictions 0N Sets. 39

ABEL-HDL Reference Manual 4

Arguments and Argument Substitution. 41

SpPaces iN ArQUMENTSot 42
Argument Guidelines. 42

BaSIC StrUCIUIE. . . . o ot e e e e e e e e 43
Header e 43
DeClaratioNs o 43
LOQIC DESCIIPION . . . o 45
Test VECIOrS SECHIONot 45
End Statement 45
Other Elements. 45
Header. . ..o 46
MOodUIE . . . 46
INtEIfACE . . . o o 46
T . o e 46
DeClaratioNS. . . . o 46
Declarations KeYyWOrd. 47
Device Declarationot 47
Hierarchy Declarations 47
Interface Declarationst 47
Functional_block Statement 48
Example of Functional Block Instantiation 49
Signal Declarations. 50
Pin DecClarationsot 50

Node Declarations. 50
Attribute ASSIGNMENT. 51
Constant Declarationso 52
Symbolic State Declarations. 52
State_register Declarations. 52

State Declarations. i 52
Macro Declarations.ot 53
Library Declaration 53

LOQIC DESCIHIPLIONo e 53
DOt EXIENSIONS . . . ot 53
EQUAaLiONSo 55
Truth Tables e 56
State DeSCrPtiONS 56
Fuse Declarations.ot 57
XOR FaClOrS. . oo e e 57
TeSt VECIOrS SECHONo e e e 58
TESE VOIS . . .t e e e e 58
Trace StatemMeNt. e e e 58
End Statement 58
Other ElemMeNntsS 59
DN G IVES . . ot 59

ABEL-HDL Reference Manual 5

Chapter 2 Design Considerations i, 60

Hierarchy in ABEL-HDL e 61
Instantiating a Lower-level Module in an ABEL-HDL Source. 61
Identifying 1/0 Ports in the Lower-level Module. 61
Specifying Signal Attributes 62
Output Enables (OE). e 62
Buried NOOES 62
Declaring Lower-level Modules in the Top-level Source. 62
Instantiating Lower-level Modules in Top-level Source. 63
Hierarchy and Retargetingand Fitting e 63
Redundant Nodes. 63
Merging Feedbacks 64
Post-linked Optimization. 64
Node Collapsing. oot 64
Selective CollapsSingo 65
Pin-to-pin Language Features 65
Device-independence vs. Architecture-independence. 65
Signal AttributeS 65
Signal Dot EXIENSIONSo 66
Pin-to-pin vs. Detailed Descriptions for Registered Designs 66
Using := for Pin-to-pin DeSCrptioNSt e 66
Resolving AmMDIQUItIES.o 67
Detailed Circuit DESCIPiONS 67
Detailed Descriptions: Designing for Macrocells. 68
Examples of Pin-to-pin and Detailed Descriptions i 69
Pin-to-pin Module DesCription. 69
Detailed Module DescCription i 70
Detailed Module with Inverted Outputs. e 70
When to Use Detailed DeSCriptions 72
Using := for Alternative Flip-flop Types i 72
Using Active-low Declarations 74
Polarity CoNtrol 76
Polarity Control with IStype. 77
Flip-flop EQUAtiONS o 78
Feedback Considerations — Using DOt EXteNsionsc ... 79
Dot Extensions and Architecture-independence i, 80
Dot Extensions and Detail Design Descriptions.ttt 82
Using Don't Care Optimization.t e 84
Exclusive OR EQUALiONS e e e 86
Optimizing XOR DeVICES oo e e e e 86
Using XOR Operators in EqQUations 86
Using Implied XORS in EQUALIONS oo e 87
Using XORs for Flip-flop Emulation 87

ABEL-HDL Reference Manual 6

State MaChiNeS o e 90

Use Identifiers Rather Than Numbersfor States 90
Powerup Register States 92
Unsatisfied Transition Conditions. e 92
D-type Flip-flopso 92

Other Flip-flops oo 93
Precautions for Using Don't Care Optimization, 94
Number Adjacent States for One-bitChange. 98
Use State Register Outputs to Identify States 99
Using Symbolic State DesCriptions.t 99
Chapter 3 Designing with CPLDS 102
CPLD DesSign Strategies oo vttt e et 102
Declaring Signals 102
Using Intermediate Signals. 103
Chapter 4 Source File Examples 111
EQUAaLiONS. . . .o 112
Memory Address Decoder i 112
Design Specification 112
Design Method 113

TSt VECIOIS 114
12-t0-4 MUItIpIEXEY .« . oo 114
Design Specification 115
Design Method 116

TSt VECIOIS . . . o 117

4-Bit Universal CoUNter e 118
Using Setsto Create MOAES ittt e e e e 118
Counter ReSet. . .. 119

Using Range OPeratorsttt 119
Design DesCriptiont 119
Bidirectional 3-state Buffer 122
Design Specification 122
Design Method 123

A-Bit COMPAratort 125
Design Specification 125
Design Method 125

TSt VECIOIS . . .o 127

Truth Table EXamples 128
Seven-segment Display Decoder. 128
Design Specification 128
Design Method 128

TSt VECIOIS 130

State Diagram Examples. 131
3-State SEQUENCET . . . o o 131
Design Specification 131
Design Method 131

T ST VECIOIS . . oo 133

ABEL-HDL Reference Manual 7

Combined LogiC DeSCIPLONS 134

Design Specification — MUXADD 136
Design Method — MUXADD. e 136

Test Vectors — MUXADD. 137
Design Specification — BINBCD 139
Design Method — BINBCD. 139

Test Vectors — BINBCD.o e 139
Design Specification — BJACK 142
Design Method — BJACK 142

Test Vectors — BJACK oo e 145
Hierarchy EXamples. e 148
ABEL and ispDesignEXpert Projects 155
Lower-IeVel SOUICES. oo e e e 156
Chapter 5 Language Reference i, 157
CeXE— DOt EXIENSIONS . . ot ittt 158
= —Constant Declarations 169
attr' — Signal Attributes. 172
@DIreCtive — DIrECHIVES it e e 173
@Alternate — Alternate Operator Set. 174
@Carry — Maximum Bit-width for Arithmetic Functions 175
@Const — Constant Declarations. 176
@DcCset — DON'T Care Set. . ..ot 177
@Dcstate — State Output DoN't Cares i 178
@EXIt — EXIit DIreCtIVE. o 179
@EXpr — EXpression DIreCtiVeo 180
@If — If DIreCtIVE. . . . o 181
@Ifb — If Blank DIreCHIVE. o e 182
@lfdef — If Defined DIreCHIVE ot e e 183
@lfiden — If ldentical DIreCtive oo 184
@Ifnb — If Not Blank DIreCtive o e e e 185
@Ifndef — If Not Defined DIreCtiVE oo e e e e e e 186
@lfniden — If Not Identical DIrectiVe.o e 187
@Include — Include DIreCtIVEo e 188
@Irp — Indefinite Repeat DIreCtive 189
@Irpc — Indefinite Repeat, Character Directive 190
@Message — Message DIreCtive 191
@ONSEt — NO DON't Care'S. . . ot ottt e e e 192
@Page — Page DireCtiVe 193
@Radix — Default Base Numbering Directive 194
@Repeat — Repeat DIreCtiVe o 195
@Setsize — Set INAeXiNgo 196
@Standard — Standard Operators Directive 197
ASYNC _reset and SYNC reSel. 198
S, . ot 199
GVl . . 201
Constant Declarations i 202
DeClarations.o 203

ABEL-HDL Reference Manual 8

ENd. . 205
EQUALIONS. . . . 206
Functional_block 208
FUSES . o o 211
0] (o 213
F-Then-Else 214
Interface (top-level) 217
Interface (lower-level) 219
Istype _ Attribute Declarations. 222
Lirary .. 227
A 0. . o 228
MOodUIE . . . 232
NG .o e 233
PN L 235
PrOP Y . . . 237
State (Declaration). e 238
State (in State_diagram) 239
State _diagram 240
State TS er. 245
SYNC TS . o 246
TSt VECIOIS . . . o 247
L 249
TG . . o 250
Truth_table. 251
L = L 254
When-Then-ElISe 255
With L e 257
XOR _faCtOrS . .o e 258

ABEL-HDL Reference Manual 9

Preface

ABEL-HDL is a hierarchical logic description language. ABEL-HDL design
descriptions are contained in an ASCII text file in the ABEL Hardware Description

Language, ABEL-HDL. The requirements for ABEL-HDL are described in this
manual.

ABEL-HDL Reference Manual 10

What is in this Manual

What is in this Manual
This manual contains the following information:

m Basic syntax and structure of ABEL-HDL
s Hierarchy in ABEL-HDL

= Node collapsing

= Pin-to-pin language features

» Pin-to-pin vs. detailed descriptions for registered designs
s Equations

s Combined logic descriptions

= Dot extensions

= Constant declarations

= Signal attributes

= Directives

m Design keywords syntax and examples

Where to Look for Information

Chapter 1, Language Structure — Provides the basic syntax and structure of an
ABEL-HDL design description.

Chapter 2, Design Considerations _ — Discusses issues to consider when creating
an ABEL-HDL module, such as architecture-independent language features, active
low declarations, flip-flop equations, feedback considerations, and polarity control.

Chapter 3, Designing with CPLDs - Discusses issues to consider when designing
for CPLD devices.

Chapter_4, Source File Examples — Contains ABEL-HDL module examples. These
examples are representative of programmable logic applications and illustrate
significant ABEL features. They also help you create your own source files.

Chapter 5, Language Reference - Gives detailed information about ABEL-HDL
language elements.

ABEL-HDL Reference Manual 11

Documentation Conventions

Documentation Conventions
This user manual follows the typographic conventions listed here:

Convention Definition and Usage
Italics Italicized text represents variable input. For example:
project .wdl

This means you must replace project with the file name you used for all the

files relevant to your design.

Valuable information may be italicized for emphasis. Book titles also appear in

italics.

The beginning of a procedure appears in italics. For example:

To see the waveform output of a vector simulation:

Bold Valuable information may be boldfaced for emphasis. Commands are shown in

boldface. For example:

Select the Source O New menu item from the iSpEXPERT System
Project Navigator.
Courier Monospaced (Courier) font indicates file and directory names and text that the
Font system displays. For example:
The C\ISPTOOLS\ISPSYS\CONFIG subdirectory contains...
Bold Bold Courier font indicates text you type in response to system prompts. For
Courier example:
SET YBUS [Y0..Y6];

[Vertical bars indicate options that are mutually exclusive; you can select only one.

For example:

INPUT|OUTPUT|BIDI

“Quotes” Titles of chapters or sections in chapters in this manual are shown in quotation

marks. For example:

See Chapter 1, “Introduction.”

[1 NOTE Indicates a special note.
A CAUTION | Indicates a situation that could cause loss of data or other problems.
O TIP Indicates a special hint that makes using the software easier.
O Indicates a menu option leading to a submenu option. For example:

File O New

ABEL-HDL Reference Manual

12

Related Documentation

Related Documentation
In addition to this manual, you might find the following reference material helpful:

Schematic Entry User Manual

ispLSI Macro Library Reference Manual
IspLSI 5K/8K Macro Library Supplement
ABEL Design Manual

ispDesignExpert User Manual

Design Verification Tools User Manual
ispDesignExpert Tutorial

VHDL and Verilog Simulation User Manual

These books provide technical specifications for ispDesignExpert and ispLSI device
families for Lattice Semiconductor Corp. (LSC). They give helpful information on
device use and design development.

ABEL-HDL Reference Manual

13

Chapter 1 Language Structure

This chapter provides the basic syntax and structure of a design description in
ABEL-HDL. For information on specific elements, refer to Chapter 5, “Language
Reference.” You can write a source file using any editor that produces ASCII files;
you are not limited to the ABEL or iSpEXPERT System Text Editor.

Summary

This chapter contains information on the following topics:

= Introduction to ABEL-HDL and to the idea of architecture-independent and
architecture-specific logic descriptions.

= Basic syntax of a source file, including

Supported ASCII characters
Identifiers and keywords

Constants

Blocks

Comments

Numbers

Strings

Operators, expressions and equations
Sets and set operation

Arguments and argument substitution

= Basic Structure of a design description, including

Header
Declarations
Logic description
Test vectors

End

ABEL-HDL Reference Manual

14

Introduction to ABEL-HDL

Introduction to ABEL-HDL

ABEL-HDL is a hardware description language that supports a variety of behavioral
input forms, including high-level equations, state diagrams, and truth tables. The
ABEL and the ABEL-HDL compiler (and supporting software) functionally verify
ABEL-HDL designs through simulation. The compilers then implements the designs
in PLDs or CPLDs.

You can enter designs in ABEL-HDL and verify them with little or no concern for the
architecture of the target device.

Architecture-independent design descriptions (those that do not include device
declarations and pin number declarations) require more comprehensive descriptions
than their architecture-specific counterparts. Assumptions that can be made when a
particular device is specified are not possible when no device is specified. See the
section “Device-independence vs. Architecture-independence” on page 65.

Basic Syntax

Each line in an ABEL-HDL source file must conform to the following syntax rules and
restrictions:

= Aline can be up to 150 characters long.

m Lines are ended by a line feed (hex 0A), by a vertical tab (hex 0B), or by a form
feed (hex OC). Carriage returns in a line are ignored, so common end-of-line
sequences, such as carriage return/line feed, are interpreted as line feeds. In
most cases, you can end a line by pressing Return.

» Keywords, identifiers, and numbers must be separated by at least one space.
Exceptions to this rule are lists of identifiers separated by commas, expressions
where identifiers or numbers are separated by operators, or where parentheses
provide the separation.

= Neither spaces nor periods can be imbedded in the middle of keywords, numbers,
operators, or identifiers. Spaces can appear in strings, comments, blocks, and
actual arguments. For example, if the keyword MODULE is entered as MOD ULE,
it is interpreted as two identifiers, MOD and ULE. Similarly, if you enter 102 05
(instead of 10205), it is interpreted as two numbers, 102 and 5.

= Keywords can be uppercase, lowercase or mixed-case.

= ldentifiers (user-supplied names and labels) can be uppercase, lowercase, or
mixed-case, but they are case sensitive. The identifier, output , typed in all
lowercase letters, is not the same as the identifier, Output .

ABEL-HDL Reference Manual 15

Basic Syntax

Supported ASCII Characters

All uppercase and lowercase alphabetic characters and most other characters on
common keyboards are supported. Valid characters are listed or shown below:

a - z (lowercase alphabet)
A - Z (uppercase alphabet)
0 - 9 (digits)

<space>

<tab>

l@#$?2+&*()-

_=H[

N,<>. 1 "%

Identifiers
Identifiers are names that identify the following items:

m devices

= device pins or nodes
= functional blocks

= Sets

= input or output signals
= constants

= Mmacros

= dummy arguments

All of these items are discussed later in this chapter. The rules and restrictions for
identifiers are the same regardless of what the identifier describes.

The rules governing identifiers are listed below:

= Identifiers can be up to 31 characters. Longer names are flagged as an error.
= ldentifiers must begin with an alphabetic character or with an underscore.

= Other than the first character, identifiers can contain upper- and lowercase
characters, digits, tildes (~), and underscores.

= You cannot use spaces in an identifier. Use underscores or uppercase letters to
separate words.

m Except for Reserved Identifiers (Keywords), identifiers are case sensitive:
uppercase letters and lowercase letters are not the same.

= You cannot use periods in an identifier, except with a supported dot extension.

ABEL-HDL Reference Manual 16

Basic Syntax

Some supported identifiers are listed below:

HELLO

hello

_KS5input

P_h
This_is_a_long_identifier
AnotherLongldentifier

Some unsupported identifiers are listed below:

7_ Does not begin with a letter or underscore

$4 Does not begin with a letter or underscore

HEL.LO Contains a period (.LO is not a valid dot extension)

b6 Kj Contains a space interpreted as two identifiers, b6 and Kj

ABEL-HDL Reference Manual

17

Basic Syntax

Reserved Identifiers (Keywords)

The keywords listed below are reserved identifiers. Keywords cannot be used to
name devices, pins, nodes, constants, sets, macros, or signals. If a keyword is used

in the wrong context, an error is flagged.

async_reset fuses state

case goto state_diagram
cycle if state_register
declarations in sync_reset
device interface test_vectors
else istype then

enable (obsolete) library title

end macro trace
endcase module truth_table
endwith node wait
equations options when

external pin with

flag (obsolete) property

functional_block

Choosing Identifiers

Choosing the right identifiers can make a source file easy to read and understand.
The following suggestions can help make your logic descriptions self-explanatory,

eliminating the need for extensive documentation.

Choose identifiers that match their function. For example, the pin you are going to
use as the carry-in on an adder could be named Carry_in. For a simple OR gate,
the two input pins might be given the identifiers IN1 and IN2, and the output might
be named OR.

Avoid large numbers of similar identifiers. For example, do not name the outputs
of a 16 bit adder: ADDER_OUTPUT_BIT_1, ADDER_OUTPUT_BIT_2, and so
on.

Use underscores or mixed-case characters to separate words in your identifier.

THIS IS _AN_IDENTIFIER
ThislsAnldentifier

is much easier to read than
THISISANIDENTIFIER

ABEL-HDL Reference Manual 18

Basic Syntax

Constants

Blocks

You can use constant values in assignment statements, truth tables, and test vectors.
You can assign a constant to an identifier, and then use the identifier to specify that
value throughout a module (see Declarations and Module later in this chapter).
Constant values can be either numeric or one of the non-numeric special constant
values. The special constant values are listed in Table 1-1.

Table 1-1. Special Constants

Constant Description

Clocked input (low-high-low transition)

Clock down edge (high-low transition)

Floating input or output signal

Clocked input (high-low-high transition)

v RIMO|O

Register preload

.Svn. n = 2 through 9. Drive the input to super voltage 2
through 9

U. Clock up edge (low-high transition)

Don't care condition

Z. Tri-state value

When you use a special constant, it must be entered as shown in Table 1-1. Without
the periods, .C . is an identifier named C. You can enter special constants in upper-
or lowercase.

Blocks are sections of text enclosed in braces, { and }. Blocks are used in equations,
state diagrams, macros, and directives. The text in a block can be on one line or it can
span many lines. Some examples of blocks are shown below:

{ this is a block }
{ this is also a block, and it
spans more than one line. }

{A=B#C;
D =]0, 1] + [1, O];
}

ABEL-HDL Reference Manual 19

Basic Syntax

Blocks can be nested within other blocks, as shown below, where the block { D = A}
is nested within a larger block:

{ A=B$C;
{D=A}
E=C; }

Blocks and nested blocks can be useful in macros and when used with directives.
(See “Macro Declarations” on page 53 and in Chapter 5, “Language
Reference.”)

If you need a brace as a character in a block, precede it with a backslash. For
example, to specify a block containing the characters { }, write

{\M{\}}

Using Blocks in Logic Descriptions

Using blocks can simplify the description of output logic in equations and state
diagrams and allow more complex functions than possible without blocks. Blocks can
improve the readability of your design.

Blocks are supported anywhere a single equation is supported. You can use blocks in
simple equations, WHEN-THEN-ELSE, IF-THEN-ELSE, CASE, and WITH
statements.

When you use equation blocks within a conditional expression (such as If-then, Case,
or When-then), the logic functions are logically ANDed with the conditional
expression.

Blocks in Equations

The following expressions, written without blocks, are limited by the inability to specify
more than one output in a When-then expression without using set notation:

Without Blocks:

WHEN (Mode == S_Data) THEN Out data:=S_in;
ELSE WHEN (Mode == T_Data) THEN Out_data :=T_in;
WHEN (Mode == S_Data) THEN S Valid :=1;
ELSE WHEN (Mode == T_Data) THEN T_Valid :=1;

With blocks (delimited with braces), the syntax above can be simplified. The logic
specified for Out_data is logically ANDed with the WHEN clause:

With Blocks:
WHEN (Mode == S_Data) THEN { Out_data := S_in;
S Vvalid :=1; }
ELSE WHEN (Mode == T_Data) THEN { Out_data := T_in;
T Vald =1; }

ABEL-HDL Reference Manual 20

Basic Syntax

Blocks in State Diagrams

Blocks also provide a simpler way to write state diagram output equations. For
example, the following two state transition statements are equivalent:

Without Blocks:

IF (Hold) THEN Statel WITH ol := ol.fb; 02 := 02.fb;
ENDWITH
ELSE State2,;

With Blocks:

IF (Hold) THEN Statel WITH {01 := ol.fb; 02 := 02.fb;}
ELSE State?;

Using Blocks for State Diagram Transitions

Blocks can be used to nest IF-THEN and IF-THEN-ELSE statements in state diagram
descriptions, simplifying the description of complex transition logic.

Blocks for Transition Logic
Without Blocks:

IF (Hold & Reset) THEN Statel,
If (Hold & Error) THEN State2;
If ('"Hold) THEN State3;

With Blocks:

If (Hold) THEN

{ IF ('Reset) THEN Statel;
IF (Error) THEN State2; }

ELSE State3;

Comments

Comments are another way to make a source file easy to understand. Comments
explain what is not readily apparent from the source code itself, and do not affect the
code. Comments cannot be imbedded within keywords.

You can enter comments two ways:

= Begin with a double quotation mark (") and end with either another double
guotation mark or the end of line.

= Begin with a double forward slash (//) and end with the end of the line. This is
useful for commenting out lines of ABEL source that contain quote-delineated
comments.

ABEL-HDL Reference Manual 21

Basic Syntax

Examples of comments are shown in boldface below:

/[gives the module a name
MODULE Basic_Logic;
TITLE 'ABEL-HDL design example: simple gates’; "title

The information inside single quotation marks (apostrophes) are required strings, not
comments, and are part of the statement.

Numbers

All numeric operations in ABEL-HDL are performed to 128-bit accuracy, which means
the supported numeric values are in the range 0 to 2128 minus 1. Numbers are
represented in any of five forms. The four most common forms represent numbers in
different bases. The fifth form uses alphabetic characters to represent a numeric
value.

When one of the four bases other than the default base is chosen to represent a
number, the base used is indicated by a symbol preceding the number. Table 1-2 lists
the four bases supported by ABEL-HDL and their accompanying symbols. The base
symbols can be upper- or lowercase.

Table 1-2. Number Representation in Different Bases

Base Name Base Symbol
Binary 2 b

Octal 8 "o

Decimal 10 ~d (default)
Hexadecimal 16 ~h

When a number is specified and is not preceded by a base symbol, it is assumed to
be in the default base numbering system. The normal default base is base 10.
Therefore, numbers are represented in decimal form unless they are preceded by a
symbol indicating that another base is to be used.

You can change the default number base. See “@Radix — Default Base
Numbering Directive” on page 194 for more information. Examples of supported
number specifications are shown below. The default base is base ten (decimal).

ABEL-HDL Reference Manual 22

Basic Syntax

Specification
T4=75
Ah75

"b101

Nol7

"hOF

Decimal Value
75
117

15
15

|:| NOTE The carat (") is a keyboard character. It is not part of a
control-key sequence.

You can also specify numbers by strings of one or more alphabetic characters, using
the numeric ASCII code of the letter as the value. For example, the character “a” is
decimal 97 and hexadecimal 61 in ASCII coding. The decimal value 97 is used if “a”

is specified as a number.

ABEL-HDL Reference Manual

23

Basic Syntax

Strings

Sequences of alphabetic characters are first converted to their binary ASCII values
and then concatenated to form numbers. Some examples are shown below:

Specification Hex Value Decimal Value
a "h61l 97

b 62 98

abc "h616263 6382203

Strings are series of ASCII characters, including spaces, enclosed by apostrophes.
Strings are used in the TITLE, MODULE, and OPTIONS statements, and in pin,
node, and attribute declarations, as shown below:

'Hello'
' Text with a space in front'

‘The preceding line is an empty string'
'‘Punctuation? is allowed!!

You can include a single quote in a string by preceding the quote with a backslash, (\).

'It\'s easy to use ABEL'

You can include backslashes in a string by using two of them in succession.

'He\\she can use backslashes in a string'

|:| NOTE The grave accent () is also accepted as a string delimiter and
can be used interchangeably with the apostrophe ().

Operators, Expressions, and Equations

Items such as constants and signal names can be brought together in expressions.
Expressions combine, compare, or perform operations on the items they include to
produce a single result. The operations to be performed (addition and logical AND

are two examples) are indicated by operators within the expression.

You can use the set operator (..) in expressions and equations.

ABEL-HDL operators are divided into four basic types: logical, arithmetic, relational,
and assignment. Each of these types are discussed separately, followed by a
description of how they are combined into expressions. Following the descriptions is
a summary of all the operators and the rules governing them and an explanation of
how equations use expressions.

ABEL-HDL Reference Manual 24

Basic Syntax

Logical Operators

Logical operators are used in expressions. ABEL-HDL incorporates the standard

logical operators listed in Table 1-3. Logical operations are performed bit by bit. For
alternate operators, refer to the “@Alternate — Alternate Operator Set” on

page 174.
Table 1-3. Logical Operators
Operator Description
! NOT: ones complement
& AND
OR
$ XOR: exclusive OR
1$ XNOR: exclusive NOR

Arithmetic Operators

Arithmetic operators define arithmetic relationships between items in an expression.

The shift operators are included in this class because each left shift of one bit is
equivalent to multiplication by 2 and a right shift of one bit is the same as division
by 2. Table 1-4 lists the arithmetic operators.

Table 1-4. Arithmetic Operators

Operator Examples Description

- -A twos complement (negation)
- A-B subtraction

+ A+B addition

Not Supported for Sets:

* A*B multiplication

/ A/B unsigned integer division
% A%B modulus: remainder from /
<< A<<B shift A left by B bits

>> A>>B shift A right by B bits

ABEL-HDL Reference Manual

25

Basic Syntax

|:| NOTE A minus sign has a different significance, depending on its
usage. When used with one operand, it indicates that the twos
complement of the operand is to be formed. When the minus
sign is found between two operands, the twos complements of
the second operand are added to the first.

Division is unsigned integer division: the result of division is a positive integer. Use
the modulus operator (%) to get the remainder of a division. The shift operators
perform logical unsigned shifts. Zeros are shifted in from the left during right shifts
and in from the right during left shifts.

Relational Operators

Relational operators compare two items in an expression. Expressions formed with
relational operators produce a Boolean true or false value. Table 1-5 lists the
relational operators.

Table 1-5. Relational Operators

Operators Description

== equal

I= not equal

< less than

<= less than or equal

> greater than

>= greater than or equal

All relational operations are unsigned. For example, the expression !0 > 4 is true
since the complement of 10 is 1111 (assuming 4 bits of data), which is 15 in unsigned
binary, and 15 is greater than 4. In this example, a four-bit representation was
assumed; in actual use, !0, the complement of 0, is 128 bits all set to 1.

ABEL-HDL Reference Manual 26

Basic Syntax

Some examples of relational operators in expressions are listed below:

Expression Value
2== False
21=3 True
3<5 True
-1>2 True

The logical values true and false are represented by numbers. Logical true is -1 in
twos complement, so all 128 bits are set to 1. Logical false is 0 in twos complement,
so all 128 bits are set to 0. This means that an expression producing a true or false
value (a relational expression) can be used anywhere a number or numeric
expression could be used and -1 or 0 will be substituted in the expression depending
on the logical result.

For example,
A=D$ (B==C);

means that

= A equals the complement of D if B equals C
= A equals D if B does not equal C.

When using relational operators, always use parentheses to ensure the expression is
evaluated in the order you expect. The logical operators & and # have a higher priority
than the relational operators (see the priority table later in this chapter).

The following equation

Select = [A15..A0] == ~hD00O # [A15..A0] == ~h1000;

needs parentheses to obtain the desired result:
Select = ([A15..A0] == ~hD000) # ([A15..A0] == ~h1000);

Without the parentheses, the equation would have the default grouping
Select = [A15..A0] == (*hD000 # [A15..A0]) == ~h1000;

which is not the intended equation.

Assignment Operators

Assignment operators are used in equations rather than in expressions. Equations
assign the value of an expression to output signals. For more information, see the
“‘Equations” on page 31.

ABEL-HDL Reference Manual 27

Basic Syntax

There are four assignment operators (two combinational and two registered).
Combinational or immediate assignment occurs, without any delay, as soon as the
equation is evaluated. Registered assignment occurs at the next clock pulse from the
clock associated with the output. Refer to Chapter 2, “Design Considerations.”
Table 1-6 shows the assignment operators.

Table 1-6. Assignment Operators

Operator Set Description

= ON (2) Combinational or detailed assignment
= ON (1) Implied registered assignment

?= DC (X) Combinational or detailed assignment
?:= DC (X) Implied registered assignment

A CAUTION The :=and ?:= assignment operators are used only when
writing pin-to-pin registered equations. Use the = and ?=
assignment operators for registered equations using
detailed dot extensions.

These assignment operators allow you to fully specify outputs in equations. For
example, in the following truth table, the output F is fully specified:

TRUTH_TABLE ([A,B]->[F]):
[1,1]-> O ; "off-set
[1,0]-> 1 ; "on-set
[0,1]-> 1 ;"on-set

ABEL-HDL Reference Manual 28

Basic Syntax

The equivalent functionality can be expressed in equations:

@DCSET
F = A&!B#!A&B; "on-set
F?=1A&!B; "dc-set

|:| NOTE Specifying both the on-set and the don't-care set conditions
enhances optimization.

A CAUTION With equations, @Dcset or Istype 'dc’ must be specified or
the ?= equations are ignored.

Expressions

Expressions are combinations of identifiers and operators that produce one result
when evaluated. Any logical, arithmetic, or relational operators may be used in
expressions.

Expressions are evaluated according to the particular operators involved. Some
operators take precedence over others, and their operation is performed first. Each
operator has been assigned a priority that determines the order of evaluation. Priority
1 is the highest priority, and priority 4 is the lowest. Table 1-7 summarizes the logical,
arithmetic and relational operators, presented in groups according to their priority.

ABEL-HDL Reference Manual 29

Basic Syntax

Table 1-7. Operator Priority

Priority Operator Description
1 - negate
1 ! NOT
2 & AND
2 << shift left
2 >> shift right
2 * multiply
2 / unsigned division
2 % modulus
3 ++ add
3 - subtract
3 OR
3 XOR: exclusive OR
3 I$ XNOR: exclusive NOR
4 == equal
4 I= not equal
4 < less than
4 <= less than or equal
4 > greater than
4 >= greater than or equal

Operations of the same priority are performed from left to right. Use parentheses to
change the order in which operations are performed. The operation in the innermost
set of parentheses is performed first. The following examples of supported

expressions show how the order of operations and the use of parentheses affect the

evaluated result.

ABEL-HDL Reference Manual

30

Basic Syntax

Expression Result Comments
2*3/2 3 operators with same priority
2*3/2 3 spaces are OK
2*(3/2) 2 fraction is truncated
2+3*4 14 multiply first
2+3)*4 20 add first
2#4%2 4 OR first
2#(4%$2) 6 XOR first
2 =="hA 0
14 == ~*hE 1

Equations

Equations assign the value of an expression to a signal or set of signals in a logic
description. The identifier and expression must follow the rules for those elements

You can use the complement operator (!) to express negative logic. The complement
operator precedes the signal name and implies that the expression on the right of the
equation is to be complemented before it is assigned to the signal. Use of the
complement operator on the left side of equations is provided as an option; equations
for negative logic parts can just as easily be expressed by complementing the
expression on the right side of the equation.

You can use Lattice Semiconductor (LSC) macros directly.

ABEL-HDL Reference Manual 31

Basic Syntax

Equation Blocks

Equation blocks let you specify more complex functions and improve the readability of
your equations. An equation block is enclosed in braces { }, and is supported
wherever a single equation is supported. When used within a conditional expression,
such as IF-THEN, CASE, or WHEN-THEN, the logic functions are logically ANDed
with the conditional expression that is in effect.

See Also

“If-Then-Else” on page 214, “When-Then-Else” on page 255, and
“Case” on page 199

Multiple Assignments to the Same Identifier

When an identifier appears on the left side of more than one equation, the
expressions assigned to the identifier are first ORed together, and then the
assignment is made. If the identifier on the left side of the equation is complemented,
the complement is performed after all the expressions have been ORed.

Equations Found Equivalent Equation
A =B;

A=C; A=B#C,;

A =B;

A=C&D; A=B#(C&D);
A =1B;

A=1C; A=1B#!C;

IA = B;

IA=C; A=1(B#C),

IA = B;

A=1C; A = 1C #IB;

IA = B;

IA =C;

A=1D;

A =IE; A=ID#!E#!(B#C);

|:| NOTE When the complement operator appears on the left side of
multiple assignment equations, the right sides are ORed first,
and then the complement is applied.

ABEL-HDL Reference Manual 32

Basic Syntax

Sets
A set is a collection of signals and constants. Any operation applied to a set is applied
to each element in the set. Sets simplify ABEL-HDL logic descriptions and test
vectors by allowing groups of signals to be referenced with one name.
For example, you could collect the outputs (BO-B7) of an eight-bit multiplexer into a
set named MULTOUT, and the three selection lines into a set named SELECT. You
could then define the multiplexer in terms of MULTOUT and SELECT rather than
individual input and output bits.
A set is represented by a list of constants and signals separated by commas or the
range operator (..) and surrounded by brackets. The sets MULTOUT and SELECT
would be defined as follows:
MULTOUT = [B0,B1,B2,B3,B4,B5,B6,B7]
SELECT =[S2,S1,S0]
The above sets could also be expressed by using the range operator; for example,
MULTOUT = [BO0..B7]
SELECT = [S2..S0]
Identifiers used to delimit a range must have compatible names: they must begin with
the same alphabetical prefix and have a numerical suffix. Range identifiers can also
delimit a decrementing range or a range which appears as one element of a larger
set as shown below:
[A7..AQ] "decrementing range
[Q1,Q2,.X.,A10..A7] "range within a larger set
The brackets are required to delimit the set. ABEL-HDL source file sets are not
mathematical sets.

Set Indexing

Set indexing allows you to access elements within a set. The following example uses
set indexing to assign four elements of a 16-bit set to a smaller set.

declarations
Setl = [f15..f0];
Set2 = [q3..90];
equations
Set2 := Setl[7..4];

The numeric values used for defining a set index refer to the bit positions of the set,

with 0 being the least significant (left-most) element in the set. So Setl[7..4] is Setl,
values 8 to f11.

ABEL-HDL Reference Manual 33

Basic Syntax

If you are indexing into a set to access a single element, then you can use the
following syntax:
declarations
outl pin istype ‘com’;
Setl = [f15..f0];
equations
outl = Setl[4] == 1;

In this example, a comparator operator (==) was used to convert the single-element
set (Setl[4]) into a bit value (equivalent to f4).

See also “@Setsize — Set Indexing.”

Set Operations

Most operators can be applied to sets, with the operation performed on each element
of the set, sometimes individually and sometimes according to the rules of Boolean
algebra. Table 1-8 lists the operators you can use with sets. This section describes
how these operators are applied to sets.

Two-set Operations

For operations involving two or more sets, the sets must have the same number of
elements. The expression “[a,b]+[c,d,e]” is hot supported because the sets have
different numbers of elements.

For example, the Boolean equation

Chip_Sel = A15 & !A14 & A13;

represents an address decoder where A15, A14 and A13 are the three high-order bits
of a 16-bit address. The decoder can easily be implemented with set operations.
First, a constant set that holds the address lines is defined so the set can be
referenced by name. This definition is done in the constant declaration section of a
module.

The declaration is

Addr = [A15,A14,A13];

which declares the constant set Addr. The equation
Chip_Sel = Addr ==[1,0,1];

is functionally equivalent to
Chip_Sel = A15 & !A14 & A13;

ABEL-HDL Reference Manual 34

Basic Syntax

If Addr is equal to [1,0,1], meaning that A15 =1, A14 = 0 and A13 = 1, then Chip_Sel
is set to true. The set equation could also have been written as

Chip_Sel = Addr == 5;
because 101 binary equals 5 decimal.

In the example above, a special set with the high-order bits of the 16-bit address was
declared and used in the set operation. The full address could be used and the same
function arrived at in other ways, as shown below:

Example 1

" declare some constants in declaration section

Addr = [al5..a0];

X = .X.; "simplify notation for don't care constant
Chip_Sel = Addr == [1,0,1,X,X,X,X,X,X,X,X,X,X,X,X];
Example 2

" declare some constants in declaration section
Addr = [al5..a0];

X =X.;

Chip_Sel = (Addr >= “HA000) & (Addr <= "HBFFF);

Both solutions presented in these two examples are functionally equivalent to the
original Boolean equation and to the first solution in which only the high order bits are
specified as elements of the set (Addr = [al5, al4, al3])

Set Assignment and Comparison

Values and sets of values can be assigned and compared to a set. Supported set
operations are given in Table 1-8. For example,

sigset = [1,1,0] & [0,1,1];

results in sigset being assigned the value, [0,1,0]. The set assignment
[a,b] =c &d;

is the same as the two assignments

a=cé&d;

b=c&d,;

Numbers in any representation can be assigned or compared to a set. The preceding
set equation could have been written as

sigset =6 & 3;

ABEL-HDL Reference Manual 35

Basic Syntax

When numbers are used for set assignment or comparison, the number is converted
to its binary representation and the following rules apply:

= the number of significant bits in the binary representation of a number is greater
than the number of elements in a set, the bits are truncated on the left.

= If the number of significant bits in the binary representation of a number is less
than the number of elements in a set, the number is padded on the left with
leading zeroes.

Thus, the following two assignments are equivalent:
[a,b] =7B101011; "bits truncated to the left

[a,b] ="B11;

And so are these two:

[d,c] ="B01,
[d,c] ="B1; "compiler will add leading zero

Table 1-8. Supported Set Operations

Operator Example Description
= A=5 combinational assignment
= A :=[1,0,1] registered assignment
! 1A NOT: ones complement
& A&B AND
A#B OR
$ A$B XOR: exclusive OR
I$ Al$B XNOR: exclusive NOR
- -A negate
- A-B subtraction
++ A+B addition
== ==B equal
I= Al=B not equal
< A<B less than
<= A<=B less than or equal
> A>B greater than
>= A>=B greater than or equal

ABEL-HDL Reference Manual 36

Basic Syntax

Set Evaluation

How an operator is performed with a set may depend on the types of arguments the
operator uses. When a setis writtenf[a , b , ¢, d] , “a” is the MOST significant
bit and “d” is the LEAST significant bit.

The result, when most operators are applied to a set, is another set. The result of the
relational operators (==, I=, >, >=, <, <=) is a value: TRUE (all ones) or FALSE (all
zeros), which is truncated or padded to as many bits as needed. The width of the
result is determined by the context of the relational operator, not by the width of the
arguments.

The different contexts of the AND (&) operator and the semantics of each usage are

described below.

signal & signal
a&b

signal & number
a&d

signal & set

a&l[x,y, z] become[a&Xx,a&y, a&z]
set & set The sets are ANDed bit-wise resulting in: [a & X, b & y].
[a, b] & [X, V] An error is displayed if the set widths do not match.

set & number
[a,b,c]&5

number & number
9&5

This is the most straightforward use. The expression is
TRUE if both signals are TRUE.

The number is converted to binary and the least
significant bit is used. The expression becomes a & 0,
then is reduced to O (FALSE).

The signal is distributed over the elements of the set to

The number is converted to binary and truncated or
padded with zeros to match the width of the set. The
sequence of transformations is

[a, b, c] &1, 0, 1]

[a&1,b&0,c&l]

[a, 0, C]

The numbers are converted to binary, ANDed together,
then truncated or padded.

ABEL-HDL Reference Manual

37

Basic Syntax

Example Equations
select = [al5..a0] == "H80FF

select (signal) is TRUE when the 16-bit address bus has the hex value 80FF.
Relational operators always result in a single bit.

[sell, sel0] =[a3..a0] > 2

The width of sel and a are different, so the 2 is expanded to four bits (of binary) to
match the size of the a set. Both sell and sel2 are true when the value of the four a
lines (taken as a binary number) is greater than 2.

The result of the comparison is a single-bit result which is distributed to both
members of the set on the output side of the equation.

[out3..0ut0] = [in3..in0] & enab

If enab is TRUE, then the values on in0 through in3 are seen on the out0 through
out3 outputs. If enab is FALSE, then the outputs are all FALSE.

Set Operation Rules

Set operations are applied according to Boolean algebra rules. Uppercase letters are
set names, and lowercase letters are elements of a set. The letters k and n are
subscripts to the elements and to the sets. A subscript following a set name
(uppercase letter) indicates how many elements the set contains. So Ak indicates that
set A contains k elements. a,_; is the (k-1)th element of set A. a, is the first element
of set A.

ABEL-HDL Reference Manual 38

Basic Syntax

Expression Is Evaluated As...
1Ak ['lak, lak-1, ..., lai]
-Ax Ak + 1
Ak.OE [ak.OE, ak-1.0E, ..., a1.0E]
Ak & Bk [ak & bk, ak-1 & bk-1, ..., a1 & bi]
Ak # Bk [ak # bk, ak-1 # bk-1, ..., a1 # b1]
Ak $ Bk [ak $ bk, ak-1 $ bk-1, ..., a1 $ b1]
Ax !'$ Bk [ak '$ bk, ak-1!$ bk, ..., a1 !$ bi]
Ak == Bk (ak == bk) & (ak-1 == bk1) & ... & (a1 ==Db1)
Ak = Bk (ax = bk) # (a1 = bk-1) # ... # (a1!=Db1)
Ak + Bk Dk
where:

dn is evaluated as an $ bn $ cn-1
cn is evaluated as (an $ bn) # (an & cn-1) # (bn & cn-1)
cO is evaluated as O

Ak - Bk Ak + (-Bk)

Ak < Bk Ck
where:
Ccnis evaluated as (an & (bn # cn-1) # an & bn & cn-1)
I=0

cO is evaluated as O

Limitations/ Restrictions on Sets

If you have a set assigned to a single value, the value will be padded with Os and then
applied to the set. For example,

[A1,A2,A3] = 1

is equivalent to

Al=0
A2=0
A3=1

which may not be the intended result. If you want 1 assigned to each member of the
set, you would need binary 111 or decimal 7.

ABEL-HDL Reference Manual 39

Basic Syntax

The results of using an operator depend on the sequence of evaluation. Without
parentheses, operations are performed from left to right. Consider the following two
equations. In the first, the constant 1 is converted to a set; in the second, the 1 is
treated as a single bit.

Equation 1:
The first operation is [a, b] & 1, so 1 is converted to a set [0, 1].

x1,yl]=[a,b]&1&d
=(a,b]& 1)&d
=([a,b] &[0, 1]) & d
=([a&0, b&1]) &d
[0, b]&d
[0&d, b&d]
[0, b &d]

x1=0
yl=b&d

Equation 2:

The first operation is 1 & d, so 1 is treated as a single bit.
x2,y2] =1&d&[a, b]

=(1&d)&][a, b]

= d &J[a b]

= [d&a, d&b]

x2=aé&d
y2=b&d

If you are unsure about the interpretation of an equation, try the following:

= Fully parenthesize your equation. Errors can occur if you are not familiar with the
precedence rules in Table 1-7.

= Write out numbers as sets of 1s and 0s instead of as decimal numbers. If the
width is not what you expected, you will get an error message.

ABEL-HDL Reference Manual 40

Basic Syntax

Arguments and Argument Substitution

Variable values can be used in macros, modules, and directives. These values are
called the arguments of the construct that uses them. In ABEL-HDL, a distinction
must be made between two types of arguments: actual and dummy. Their definitions
are given here.

Dummy argument An identifier used to indicate where an actual argument is
to be substituted in the macro, module, or directive.
Actual argument The argument (value) used in the macro, directive, or

module. The actual argument is substituted for the
dummy argument. An actual argument can be any text,
including identifiers, numbers, strings, operators, sets, or
any other element of ABEL-HDL.

Dummy arguments are specified in macro declarations and in the bodies of macros,
modules, and directives. The dummy argument is preceded by a question mark in the
places where an actual argument is to be substituted. The question mark
distinguishes the dummy arguments from other ABEL-HDL identifiers occurring in the
source file.

Take for example, the following macro declaration arguments (see “Macro
Declarations” on page 53):

OR_EM MACRO (a,b,c) {?a#?b# ?c};

This defines a macro named OR_EM that is the logical OR of three arguments.
These arguments are represented in the definition of the macro by the dummy
arguments, a, b, and c. In the body of the macro, which is surrounded by braces, the
dummy arguments are preceded by question marks to indicate that an actual
argument is substituted.

The equation

D = OR_EM (x,y,z&1);

invokes the OR_EM macro with the actual arguments, X, y, and z&1. This results in
the equation:

D=x#y#2z&1,

Arguments are substituted into the source file before checking syntax and logic, so if

an actual argument contains unsupported syntax or logic, the compiler detects and
reports the error only after the substitution.

ABEL-HDL Reference Manual 41

Basic Syntax

Spaces in Arguments

Actual arguments are substituted exactly as they appear, so any spaces (blanks) in
actual arguments are passed to the expression. In most cases, spaces do not affect
the interpretation of the macro. The exception is in functions that compare character
strings, such as @IFIDEN and IFNIDEN. For example, the macro

iden macro(a,b) {@ifiden(?a,?b)
{@message 'they are the same';};};

compares the actual arguments and prints the message if they are identical. If you
enter the macro with spaces in the actual arguments:

iden(Q1, Q1);

The value is false because the space is passed to the macro.

Argument Guidelines
= Dummy arguments are place holders for actual arguments.

= A question mark preceding the dummy argument indicates that an actual
argument is to be substituted.

= Actual arguments replace dummy arguments before the source file is checked for
correctness.

= Spaces in actual arguments are retained.

Further discussion and examples of argument use are given in Chapter 5,
“Language Reference” under Module , Macro, and “@Directive — Directives.”

ABEL-HDL Reference Manual 42

Basic Structure

Basic Structure

Header

ABEL-HDL source files can contain independent modules. Each module contains a
complete logic description of a circuit or subcircuit. Any number of modules can be
combined into one source file and processed at the same time.

This section covers the basic elements that make up an ABEL-HDL source file
module. A module can be divided into five sections:

= Header

m Declarations

m Logic Description

m Test Vectors

= End

The elements of the source file are shown in the template in Figure 1-1. There are
also directives that can be included in any of the middle three sections. The sections
are presented briefly, then each element is introduced. You can find complete
information in Chapter 5, “Language Reference”

The following rules apply to module structure:

= A module must contain only one header (composed of the Module statement and
optional Title and Options statements).

= All other sections of a source file can be repeated in any order. Declarations must
immediately follow either the header or the Declarations keyword.

= No symbol (identifier) can be referenced before it is declared.

m The Header Section can consist of the following elements:
= Module (required)

= Interface (lower level, optional)

s Title

Declarations

A Declarations Section can consist of the following elements:

m Declarations Keyword

= Interface and Functional Block Declarations

= Signal Declarations (pin and node numbers optional)
m Constant Declarations

m Macro Declarations

m Library Declarations

m Device Declaration (one per module)

ABEL-HDL Reference Manual 43

Basic Structure

Logic
Description Declarations Header

Test
End Vectors

MODULE

The module statement names the module and

indicates if dummy arguments are used.

In lower-level modules, it can be

followed by an interface declaration.

ABEL-HDL Module

Module source3
Title 'Example of a Source File’

Declarations
inl, in2, in3, clk
all, none, other
in=[inl..in3];
out = [all, none, other];

PIN;
PIN ISTYPE

Equations
out.clk = clk;
all = in1&in2 &in3;
none := linl &!in2 & !in3;
other := (linl #!1in2 # !in3) &
(inl # in2# in3)

Test_Vectors
([in, clk] -> [out]
(7, c]->4;
(3, c]->1;

End source3

reg’;

Bold denotes ABEL-HDL keywords

TITLE

The title statement can be used to
give a title or description for the
module.

DECLARATIONS

Declarations declare lower-level
modules, and associate names
with functional block instances
devices, pins, nodes, constants,
macros, and sets. They also
assign attributes with istype .

EQUATIONS

You can use Equations, State
Diagrams or Truth Tables to
describe your logic design.

TEST_VECTORS

Test Vectors are used as
stimulus for Functional Simulator
or Timing Simulator.

END
The end statement ends the
module.

Figure 1-1. ABEL-HDL Module Structure

ABEL-HDL Reference Manual 44

Basic Structure

Logic Description
You can use one or more of the following elements to describe your design.

= Equations

= Truth Tables

= State Diagrams
= Fuses

= XOR Factors

Test Vectors Section

Test vectors are used for Functional or Timing Simulation. A Test Vectors section can
consist of the following elements:

m Test Vectors
m Trace Statement
= Test Script

End Statement
A module is closed with the end statement;

s End Statement

Other Elements
Directives can be placed anywhere you need them:

s Directives

ABEL-HDL Reference Manual 45

Header

Header

Module

Keyword: module

The MODULE statement is required. It defines the beginning of the module and must
be paired with an END statement. The MODULE statement also indicates whether
any module arguments are used.

Interface

Title

Keyword: interface

The INTERFACE statement is used in lower-level sources to indicate signals used in
upper-level files. The interface statement is optional.

Keyword: title

The title is optional. The title appears as a header in some output files.

Declarations

The declarations section of a module specifies the names and attributes of signals
used in the design, defines constants macros and states, declares lower-level
modules and schematics, and optionally declares a device. Each module must have
at least one declarations section, and declarations affect only the module in which
they are defined. There are several types of declaration statements:

m Constant (see =)

= Device

= Hierarchy

m Library

s Macro

= Signal (see Pin, Node and Istype)
m State

= State register

The syntax and use of each of these types is presented in Chapter 5, “Language
Reference.” Some are discussed briefly below.

ABEL-HDL Reference Manual 46

Declarations

Declarations Keyword
Keyword: declarations

This keyword allows declarations (such as sets or other constants) in any part of the
source file.

Device Declaration
Keyword: device

device id Device real device

The DEVICE declaration is optional, and only one can be made per module. It
associates a device identifier with a specific programmable logic device.

Hierarchy Declarations

Interface Declarations
Top-level Interface Declarations

Keyword: interface

low-level module_name Interface (inputs [= value 1-> outputs >
bidirs ...)

The INTERFACE keyword declares lower-level modules that are used by the current
module. This declaration is used in conjunction with a FUNCTIONAL_BLOCK
declaration for each instantiation of a module.

When you instantiate a functional block, you must map port names to signal names
with equations. See “Functional_block” on page 208 for more information.

Lower-level Interface Declarations

Keyword: interface

Module module_name
Interface (input/set =value ...-> output/set > bidir/set);

Use the INTERFACE declaration in lower-level modules to assign a default port list
and input values for the module when instantiated in higher-level ABEL-HDL sources.
In the higher-level source, you must declare signals and sets in the same order and
grouping as given in the interface statement in the instantiated module.

The -> and :> delimiters are used to indicate the direction of each port of a functional
block.

ABEL-HDL Reference Manual 47

Declarations

A CAUTION Interface declarations cannot contain dot extensions. If
you need a specific dot extension across a source
boundary (to resolve feedback ambiguities, for example),
you must introduce an intermediate signal into the
lower-level module to provide the connection to the
higher-level source. All dot extension equations for a
given output signal must be located in the ABEL-HDL
module in which the signal is defined. No references to
that signal's dot extensions can be made outside of the
ABEL-HDL module.

Functional_block Statement

Keyword: functional_block

Declarations

instance_name Functional_block module_name
Equations
instance_name . port hame = signal_name ;

Use a FUNCTIONAL_BLOCK declaration to instantiate a declared source within a
higher-level ABEL-HDL source. You must declare a source with an INTERFACE
declaration before instantiating it with FUNCTIONAL_BLOCK.

ABEL-HDL Reference Manual 48

Declarations

Example of Functional Block Instantiation

To declare the two ABEL-HDL sources shown in Figure 1-2 would require the
following syntax:

module FUNC ;
modl INTERFACE (il -> 01);
A FUNCTIONAL_BLOCK mod1;
mod2 INTERFACE (i1 -> 0l);
B FUNCTIONAL_ BLOCK mod2;
| pin ;
O pin istype 'com’;
Equations
O =B.o1;
B.il = A.ol;
Ail =1,

end Func

MODULE MOD 1 MODULE MOD2

Figure 1-2. Functional Block Instantiation

D NOTE The output of an equation must always be on the left side of
the equations.

See Also

“Hierarchy in ABEL-HDL” on page 61

ABEL-HDL Reference Manual 49

Declarations

Signal Declarations

The PIN and NODE declarations are made to declare signals used in the design, and
optionally to associate pin and/or node numbers with those signals. Actual pin and
node numbers do not have to be assigned until you want to map the design into a
device. Attributes can be assigned to signals within pin and node declarations with
the ISTYPE statement. Dot extensions can also be used in equations to precisely
describe the signals; see “Dot Extensions” on page 53.

D NOTE Assigning pin numbers defines the particular pin-outs
necessary for the design. Pin numbers only limit the device
selection to a minimum number of input and output pins. Pin
number assignments can be changed later by the compiler.

Pin Declarations

Keyword: pin

['] pin_id [][!] pin_id ..] Pin [pin# [, pin#]]
[ISTYPE' attributes '1;

See Also

“Attribute Assignment” on page 51
“Using Active-low Declarations” on page 74

Node Declarations

Keyword: node

[!'] node id [,['] node_id ...] Node [node# [, node#]]
[ISTYPE' attributes "1;

See Also

“Attribute Assignment” on page 51
“Using Active-low Declarations” on page 74

ABEL-HDL Reference Manual 50

Declarations

Attribute Assignment

Keyword: istype

signal [, signal 1]... Istype ' attributes ;

The ISTYPE statement defines attributes (characteristics) of signals for devices with
programmable characteristics or when no device and pin/node number has been
specified for a signal. Even when a device has been specified, using attributes will
make it more likely that the design operates consistently if the device is changed later.
ISTYPE can be used after pin or node declarations.

Attributes may be entered in uppercase, lowercase, or mixed-case letters.

Table 1-9 summarizes the attributes. Each attribute is discussed in more detail in
Chapter_5, “Language Reference” _under Istype.

Table 1-9. Attributes

Arch.

Dot Ext. Indep. Description
‘buffer’ No Inverter in Target Device.
‘collapse’ Collapse (remove) this signal. *
‘com'’ U Combinational output.
'dc’ O Unspecified logic is don't care. 2
'invert' Inverter in Target Device.
'keep’ Do not collapse this signal from equations.
'neg’ Unspecified logic is 1. 2
'pos’ O Unspecified logic is 0. 2
'retain’ U Do not minimize this output. Preserve

redundant product terms. 3
'reg’ U Clocked Memory Element.
'reg_d' D Flip-flop Clocked Memory Element.
'reg_g' D Flip-flop Gated Clock Memory Element.
'reg_jk' JK Flip-flop Clocked Memory Element.
'reg_sr' SR Flip-flop Clocked Memory Element.
'reg_t' T Flip-flop Clocked Memory Element.
'xor' XOR Gate in Target Device.

ABEL-HDL Reference Manual 51

Declarations

1. If neither 'keep' nor 'collapse’ is specified, the compiler program can keep or
collapse the signal, as needed, to optimize the circuit.

2. The'dc,' 'neg,' and 'pos' attributes are mutually exclusive.

3. The 'retain’ attribute only controls optimization performed by ABEL-HDL Compile
Logic. To preserve redundant product terms, you must also specify no reduction
for the Reduce Logic and fitting (place and route) programs.

Constant Declarations

Keyword: =

d [, id].. = expr [, exprl]..;

A constant is an identifier that retains a constant value in a module and is specified
with the = sign. Constant declarations must be in a declarations section or after a
@Const directive.

See Also

“Constants” on page 19

Symbolic State Declarations

The STATE_REGISTER and STATE declarations are made to declare a symbolic
state machine name, and to declare symbolic state names.

See Also

“State Descriptions” on page 56

State_register Declarations

Keyword: state register

statereg_id State_register [Istype ‘attributes'];

State Declarations

Keyword: state

state_id [, state_id...] State [state_value
[, state_value...]];

ABEL-HDL Reference Manual 52

Logic Description

Macro Declarations

Keyword: macro

macro_id Macro [(dummy_arg [, dummy_arg]...)] { block };

The MACRO declaration statement defines a macro. Use macros to include functions
in a source file without repeating the code.

Library Declaration

Keyword: library

Library name ;

The LIBRARY statement extracts the contents of the indicated file from the
ABEL-HDL library and inserts it into your file.

Logic Description
One or more of the following elements can be used to describe your design.

= Equations

= Truth Tables

= State Descriptions
s Fuses

= XOR Factors

In addition, dot extensions (like Istype attributes in the Declarations section) enable
you to more precisely describe the behavior of a circuit in a logic description that may
be targeted to a variety of different devices.

Dot Extensions
Syntax signal name . ext

Dot extensions can be specific for certain devices (device-specific) or generalized for
all devices (architecture-independent). Device-specific dot extensions are used with
detailed syntax; architecture-independent dot extensions are used with pin-to-pin
syntax. Detailed and pin-to-pin syntax is described in more detail in Chapter 2,
“Design Considerations.” Dot extensions can be applied in complex language
constructs such as nested sets or complex expressions.

The ABEL-HDL dot extensions are listed in Table 1-10.

ABEL-HDL Reference Manual 53

Logic Description

Table 1-10. Dot Extensions

Dot Extensions Description

Pin-to-Pin Syntax, Architecture-independent

ACLR *Asynchronous clear

ASET *Asynchronous set

.CLK Clock input to an edge-triggered flip-flop

.CLR *Synchronous clear

.COM *Combinational feedback normalized to the pin value
.FB Register feedback

.OE Output enable

.PIN Pin feedback

SET *Synchronous set

Detailed Syntax, Device-specific

AP Asynchronous register preset

AR Asynchronous register reset

.CE Clock-enable input to a gated-clock flip-flop
.D Data input to a D-type flip-flop

FC Flip-flop mode control

J input to a JK-type flip-flop

K K input to a JK-type flip-flop
LD Register load input

LE Latch-enable input to a latch
.LH Latch-enable (high) to a latch
PR Register preset

.Q Register feedback

R R input to an SR-type flip-flop
.RE Register reset

S S input to an SR-type flip-flop
.SP Synchronous register preset

ABEL-HDL Reference Manual 54

Logic Description

Table 1-10. Dot Extensions (Continued)

Dot Extensions Description
SR Synchronous register reset
T T input to a T-type (toggle) flip-flop

* The .CLR, .ACLR, .SET, .ASET, and.COMdot extensions are not recognized
by device fitters released prior to ABEL 5.0. If you are using a fitter that does not
support these reset/preset dot extensions, specify istype ‘invert' or istype ‘buffer’
and the compiler converts the new dot extensions to .SP, .AP, .SR, .AR, and .D,
respectively.

Equations

Keyword: equations

Equations
[WHEN condition THEN][!] element=expression;
[ELSE equation];
or
[WHEN condition THEN] equation; [ELSE equation];
inst_name LSC_macro_name (port_definition);

The EQUATIONS statement defines the beginning of a group of equations that
specify the logic functions of a device.

See Also

“Operators, Expressions, and Equations” on page 24
“When-Then-Else” on page 255

ABEL-HDL Reference Manual 55

Logic Description

Truth Tables

Keyword: truth_table

Truth_table (inputs -> outputs)
inputs -> outputs

or
Truth_table (inputs [:> registered outputs 1[-> outputs])

Truth tables specify outputs as functions of input combinations in tabular form.

See Also

“@Dcset — Don't Care Set” on page 177

State Descriptions

Keyword: state_diagram

State_diagram state_reg
[> state out |
[STATE state exp :[equation |
[equation |

trans_stmt ...]

The STATE_DIAGRAM section contains state descriptions that describe the logic
design.

The specification of a state description requires the use of the STATE_DIAGRAM

syntax, which defines the state machine, and the IF-THEN-ELSE, CASE, and GOTO
statements that determine the operation of the state machine.

See Also

“With” on page 257

ABEL-HDL Reference Manual 56

Logic Description

Fuse Declarations

Keyword: fuses

Fuses

fuse_number = fuse value ;
or

fuse_number_set = fuse value ;

The FUSES section explicitly declares the state of fuses in the associated device. A
device must be declared before a fuses declaration.

XOR Factors

Keyword: XOR_Factors

XOR_factors
signal name = xor_factors

The XOR_FACTORS section allows you to specify a Boolean expression that is to be
factored out of and XORed with the sum-of-products reduced equations. This
factoring can result in smaller reduced equations when the design is implemented in
a device featuring XOR gates.

ABEL-HDL Reference Manual 57

Test Vectors Section

Test Vectors Section

Test Vectors

Keyword: test_vector

Test vectors [note |
(inputs -> outputs)
[invalues -> outvalues ;]...

Test vectors specify the expected operation of a logic device by defining its outputs as
a function of its inputs.

Trace Statement

Keyword: trace

Trace (inputs -> outputs);

The TRACE statement limits which inputs and outputs are displayed in the simulation
report.

End Statement

Keyword: end

End module _name

The END statement ends the module and is required.

ABEL-HDL Reference Manual 58

Other Elements

Other Elements

Directives
Keyword: @ directive
@directive [options]

Directives provide options that control the contents or processing of a source file.
Sections of ABEL-HDL source code can be included conditionally, code can be
brought in from another file, and messages can be printed during processing.

Some directives take arguments that determine how the directive is processed.
These arguments can be actual arguments or dummy arguments preceded by a
guestion mark. The rules applying to actual and dummy arguments are presented
under “Arguments and Argument Substitution” on page 41.

Available directives are listed below. See @ in Chapter 5, “Language Reference”
for complete information.

@ALTERNATE
@CARRY
@CONST
@DCSET
@DCSTATE
@EXPR
@EXIT

@IF

@IFB
@IFDEF
@IFIDEN
@IFNB

@IFNDEF
@IFNIDEN
@INCLUDE
@IRP
@IRPC
@MESSAGE
@ONSET
@PAGE
@RADIX
@REPEAT
@SETSIZE
@STANDARD

ABEL-HDL Reference Manual 59

Chapter 2

Design Considerations

This chapter discusses issues you need to consider when you create a design with
ABEL-HDL. The topics covered are listed below:

Hierarchy in ABEL-HDL

Pin-to-Pin Architecture-independent Language Features
Pin-to-Pin vs. Detailed Descriptions for Registered Designs
Using Active-low Declarations

Polarity Control

Istypes and Attributes

Flip-flop Equations

Feedback Considerations — Using Dot Extensions
@Dcset Considerations and Precautions

Exclusive OR Equations

State Machines

Using Complement Arrays

Accessing Device-specific and Complex Architectural Elements

ABEL-HDL Reference Manual

60

Hierarchy in ABEL-HDL

Hierarchy in ABEL-HDL
You use hierarchy declarations in an upper-level ABEL-HDL source to refer to
(instantiate) an ABEL-HDL module.
To instantiate an ABEL-HDL module in the lower-level module (optional):
1. ldentify lower-level I/O Ports (signals) with an INTERFACE statement.

To instantiate an ABEL-HDL module in the top-level source:

2. Declare the lower-level module with an Interface declaration.
3. Instantiate the lower-level module with Functional_block declarations.

|:| NOTE Hierarchy declarations are not required when instantiating an
ABEL-HDL module in an ispDesignExpert schematic. For
instructions on instantiating lower-level modules in schematics,
refer to the online help.

Instantiating a Lower-level Module in an ABEL-HDL Source

Identifying 1/0 Ports in the Lower-level Module

The way to identify an ABEL-HDL module's input and output ports is to place an
INTERFACE statement immediately following the MODULE statement. The
INTERFACE statement defines the ports in the lower-level module that are used by
the top-level source.

You must declare all input pins in the ABEL-HDL module as ports, and you can
specify default values of 0, 1, or Don't-care.

You do not have to declare all output pins as ports. Any undeclared outputs become
No Connects or redundant nodes. Redundant nodes can later be removed from the
designs during post-link optimization.

The following source fragment is an example of a lower-level INTERFACE statement.

module lower
interface (a=0, [d3..d0]=7 -> [z0..27]) ;
title 'example of lower-level interface statement ' ...

This statement identifies input a, d3, d2, d1 and dO with default values, and outputs
z0 through z7. For more information, see “Interface (lower-level)” on page 219

ABEL-HDL Reference Manual 61

Hierarchy in ABEL-HDL

Specifying Signal Attributes

Attributes specified for pins in a lower-level module are propagated to the higher-level
source. For example, a lower-level pin with an ‘invert' attribute affects the higher-level
signal wired to that pin (it affects the pin's preset, reset, preload, and power-up value).

Output Enables (OE)

Connecting a lower-level tri-state output to a higher-level pin results in the output
enable being specified for the higher-level pin. If another OE is specified for the
higher-level pin, it is flagged as an error. Since most tri-state outputs are used as
bidirectionals, it might be important to keep the lower-level OE.

Buried Nodes
Buried nodes in lower-level sources are handled as follows:

Dangling Nodes Lower-level nodes that do not fanout are
propagated to the higher-level module and become
dangling nodes. Optimization may remove dangling

nodes.

Combinational nodes Combinational nodes in a lower-level module
become collapsible nodes in the higher-level
module.

Registered nodes Registered nodes are preserved with hierarchical

names assigned to them.

Declaring Lower-level Modules in the Top-level Source

To declare a lower-level module, you match the lower-level module's interface
statement with an interface declaration. For example, to declare the lower-level
module given above, you would add the following declaration to your upper-level
source declarations:

lower interface (a, [d3..d0] -> [z0..27]) ;

You could specify different default values if you want to override the values given in
the instantiated module, otherwise the instantiated module must exactly match the
lower-level interface statement. See “Interface (top-level)” on page 217 _ for more
information.

ABEL-HDL Reference Manual 62

Hierarchy in ABEL-HDL

Instantiating Lower-level Modules in Top-level Source

Use a FUNCTIONAL_BLOCK declaration in an top-level ABEL-HDL source to
instantiate a declared lower-level module and make the ports of the lower-level
module accessible in the upper-level source. You must declare sources with an
INTERFACE declaration before you instantiate them.

To instantiate the module declared above, add an interface declaration and signal
declarations to your top-level declarations, and add port connection equations to your
top-level equations, as shown in the source fragment below:

DECLARATIONS
lowl FUNCTIONAL_BLOCK lower ;
zed0..zed7 pin ; "upper-level inputs
atop pin istype 'reg,buffer’; "upper-level output
d3..d0 pin istype 'reg,buffer’;"upper-level outputs

EQUATIONS
atop = low1l.a; "wire this source's outputs
[d3..d0] = low1.[d3..dO] ; "to lower-level inputs

low1.[z0..z7] = [zedO..zed7]; "wire this source's inputs to
"lower-level outputs

See “Functional_block” on page 208 for more information.

Hierarchy and Retargeting and Fitting

Redundant Nodes

When you link multiple sources, some unreferenced nodes may be generated. These
nodes usually originate from lower-level outputs that are not being used in the top-
level source. For example, when you use a 4-bit counter as a 3-bit counter. The most
significant bit of the counter is unused and can be removed from the design to save
device resources. This step also removes trivial connections. In the following
example, if outl is a pin and t1 is a node:

outl =t1;
t1 = a86;

would be mapped to
outl = a86;

ABEL-HDL Reference Manual 63

Node Collapsing

Merging Feedbacks

Linking multiple modules can produce signals with one or more feedback types, such
as .FB and .Q. You can tell the optimizer to combine these feedbacks to help the
fitting process.

Post-linked Optimization
If your design has a constant tied to an input, you can re-optimize the design. Re-

optimizing may further reduce the product terms count.
For example, if you have the equation
out=1i0 & il || !0 & i2;

and i0 is tied to 1, the resulting equation would be simplified to

out =il;

Node Collapsing

All combinational nodes are collapsible by default. Nodes that are to be collapsed (or
nodes that are to be preserved) are flagged through the use of signal attributes in the
language. The signal attributes are:

Istype 'keep' Do not collapse this node.
‘collapse’ Collapse this node.

Collapsing provides multi-level optimization for combinational logic. Designs with
arithmetic and comparator circuits generally generate a large number of product
terms that will not fit to any programmable logic device. Node collapsing allows you to
describe equations in terms of multi-level combinational nodes, then collapse the
nodes into the output until it reaches the product term you specify. The result is an
equation that is optimized to fit the device constraints.

ABEL-HDL Reference Manual 64

Pin-to-pin Language Features

Selective Collapsing

In some instances you may want to prevent the collapsing of certain nodes. For
example, some nodes may help in the simulation process. You can specify nodes you
do not want collapsed as Istype 'keep' and the optimizer will not collapse them.

Pin-to-pin Language Features

ABEL-HDL is a device-independent language. You do not have to declare a device or
assign pin numbers to your signals until you are ready to implement the design into a
device. However, when you do not specify a device or pin numbers, you need to
specify pin-to-pin attributes for declared signals.

Because the language is device-independent, the ABEL-HDL compiler does not have
predetermined device attributes to imply signal attributes. If you do not specify signal
attributes or other information (such as the dot extensions, which are described later),
your design might not operate consistently if you later transfer it to a different target
device.

Device-independence vs. Architecture-independence

The requirement for signal attributes does not mean that a complex design must
always be specified with a particular device in mind. You may still have to understand
the differences between, for example, a GAL16LV8 and an ispLSI1032E, but you do
not have to specify a particular device when describing your design.

Attributes and dot extensions help you refine your design to work consistently when
moving from one class of device architecture to another; for example from devices
having inverted outputs to those with a particular kind of reset/preset circuitry.
However, the more you refine your design, using these language features, the more
restrictive your design becomes in terms of the number of device architectures for
which it is appropriate.

Signal Attributes

Signal attributes remove ambiguities that occur when no specific device architecture
is declared. If your design does not use device-related attributes (either implied by a
DEVICE statement or expressed in an ISTYPE statement), it may not operate the
same way when targeted to different device architectures. See “Pin” on page 235,
“Node” on page 233, and “Istype _ Attribute Declarations” on page 222

ABEL-HDL Reference Manual 65

Pin-to-pin vs. Detailed Descriptions for Registered Designs

Signal Dot Extensions

Signal dot extensions, like attributes, enable you to more precisely describe the
behavior of a circuit that may be targeted to different architectures. Dot extensions
remove the ambiguities in equations.

Refer to “Dot Extensions and Architecture-independence” on page 80 or"“. ext
— Dot Extensions” on page 158 for more information.

Pin-to-pin vs. Detailed Descriptions for Registered Designs

You can use ABEL-HDL assignment operators when you write high-level equations.
The = operator specifies a combinational assignment, where the design is written
with only the circuit's inputs and outputs in mind. The := assignment operator
specifies a registered assignment, where you must consider the internal circuit
elements (such as output inverters, presets and resets) related to the memory
elements (typically flip-flops). The semantics of these two assignment operators are
discussed below.

Using := for Pin-to-pin Descriptions

The := implies that a memory element is associated with the output defined by the
equation. For example, the equation

Q1 :=1Q1 # Preset;

implies that Q1 will hold its current value until the memory element associated with
that signal is clocked (or unlatched, depending on the register type). This equation is
a pin-to-pin description of the output signal Q1. The equation describes the signal's
behavior in terms of desired output pin values for various input conditions. Pin-to-pin
descriptions are useful when describing a circuit that is completely architecture-
independent.

Language elements that are useful for pin-to-pin descriptions are the ":=" assignment
operator, and the .CLK, .OE, .FB, .CLR, .ACLR, .SET, .ASET, and .COMdot
extensions described in Chapter 5, “Language Reference.” These dot extensions
help resolve circuit ambiguities when describing architecture-independent circuits.

ABEL-HDL Reference Manual 66

Pin-to-pin vs. Detailed Descriptions for Registered Designs

Resolving Ambiguities

In the equation above (Q1 :=!Q1 # Preset;), there is an ambiguous feedback
condition. The signal Q1 appears on the right side of the equation, but there is no
indication of whether that fed-back signal should originate at the register, come
directly from the combinational logic that forms the input to the register, or come from
the 1/O pin associated with Q1. There is also no indication of what type of register
should be used (although register synthesis algorithms could, theoretically, map this
equation into virtually any register type). The equation could be more completely
specified in the following manner:

Q1.CLK = Clock; "Register clocked from input
Q1 :=!Q1.FB # Preset; "Reg. feedback normalized to pin value

This set of equations describes the circuit completely and specifies enough
information that the circuit will operate identically in virtually any device in which you
can fit it. The feedback path is specified to be from the register itself, and the .CLK
equation specifies that the memory element is clocked, rather than latched.

Detailed Circuit Descriptions

In contrast to a pin-to-pin description, the same circuit can be specified in a detailed
form of design description in the following manner:

Q1.CLK = Clock; "Register clocked from input
Q1l.D = 1Q1.Q # Preset; "D-type f/f used for register

In this form of the design, specifying the D input to a D-type flip-flop and specifying
feedback directly from the register restricts the device architectures in which the
design can be implemented. Furthermore, the equations describe only the inputs to,
and feedback from, the flip-flop and do not provide any information regarding the
configuration of the actual output pin. This means the design will operate quite
differently when implemented in a device with inverted outputs, versus a device with
non-inverting outputs.

To maintain the correct pin behavior, using detailed equations, one additional
language element is required: a 'buffer' attribute (or its complement, an 'invert'
attribute). The 'buffer' attribute ensures that the final implementation in a device has
no inversion between the specified D-type flip-flop and the output pin associated with
Q1. For example, add the following to the declarations section:

Q1 pin istype 'buffer’;

ABEL-HDL Reference Manual 67

Pin-to-pin vs. Detailed Descriptions for Registered Designs

Detailed Descriptions: Designing for Macrocells

One way to understand the difference between pin-to-pin and detailed description
methods is to think of detailed descriptions as macrocell specifications. A macrocell is
a block of circuitry normally (but not always) associated with a device's /O pin.
Figure 2-1 illustrates a typical macrocell associated with signal Q1.

Detailed descriptions are written for the various input ports of the macrocell (shown in
Figure 2-1 with dot extension labels). Note that the macrocell features a configurable
inversion between the Q output of the flip-flop and the output pin labeled Q1. If you
use this inverter (or select a device that features a fixed inversion), the behavior you
observe on the Q1 output pin will be inverted from the logic applied to (or observed
on) the various macrocell ports, including the feedback port Q1.q .

Ql.ap |

AP Ql.oeT
Qld —————D 0 o Q1

Fuse
Mux

Ql.clk

Ql.ar

>CLK

Qlqg

<
Ql-pinzi

1Q1.pin

Figure 2-1. Detail Macrocell

Pin-to-pin descriptions, on the other hand, allow you to describe your circuit in terms
of the expected behavior on an actual output pin, regardless of the architecture of the
underlying macrocell. Figure 2-2 illustrates the pin-to-pin concept:

ABEL-HDL Reference Manual 68

Pin-to-pin vs. Detailed Descriptions for Registered Designs

—

- —
b : _,,/)I
e T

Figure 2-2. Pin-to-pin Macrocell

When pin-to-pin descriptions are written in ABEL-HDL, the "generic macrocell”
shown above is synthesized from whatever type of macrocell actually exists in the

target device.

Examples of Pin-to-pin and Detailed Descriptions
Two equivalent module descriptions, one pin-to-pin and one detailed, are shown

below for comparison:

Pin-to-pin Module Description

module Q1 1
Q1 pin istype 'reg’;
Clock,Preset pin;
equations
Ql.clk = Clock;
Q1 :=1Q1.fb # Preset;
test_vectors ([Clock,Preset] -> Q1)
[.c., 1]->1,;
[.c., 0]->0;
[.c., 0]->1;
[.c., 0]->0;
[.c., 1]->1;
[.c., 1]->1;
end

ABEL-HDL Reference Manual

1

4]

69

Pin-to-pin vs. Detailed Descriptions for Registered Designs

Detailed Module Description

module Q1 2
Q1 pin istype 'reg_D,buffer",
Clock,Preset pin;

equations

Q1.CLK = Clock;
Q1.D =1Q1.Q # Preset;
test_vectors ([Clock,Preset] -> Q1)

[.c., 1]->1,;
[.c., 0]->0;
[.c., 0]->1;
[.c., 0]->0;
[.c, 1]->1;
[.c., 1]->1,;

end

The first description can be targeted into virtually any device (if register synthesis and
device fitting features are available), while the second description can be targeted
only to devices featuring D-type flip-flops and non-inverting outputs.

To implement the second (detailed) module in a device with inverting outputs, the
source file would need to be modified in the following manner:

Detailed Module with Inverted Outputs

module Q1_3
Q1 pin istype 'reg_D,invert’;
Clock,Preset pin;

equations

Q1.CLK = Clock;
1Q1.D = Ql1.Q # Preset;
test_vectors ([Clock,Preset] -> Q1)

[.c., 1]->1,;
[.c., 0]->0;
[.c., 0]->1;

[.
[
[.

000

0]->0;

1]1->1;

1]->1;

end

In this version of the module, the existence of an inverter between the output of the

D-type flip-flop and the output pin (specified with the ‘invert' attribute) has
necessitated a change in the equation for Q1.D.

ABEL-HDL Reference Manual 70

Pin-to-pin vs. Detailed Descriptions for Registered Designs

As this example shows, device-independence and pin-to-pin description methods are
preferable, since you can describe a circuit completely for any implementation. Using
pin-to-pin descriptions and generalized dot extensions (such as .FB, .CLK, and .OE)
as much as possible allows you to implement your ABEL-HDL module into any one of
a particular class of devices. (For example, any device that features enough flip-flops
and appropriately configured I/O resources.) However, the need for particular types
of device features (such as register preset or reset) might limit your ability to describe
your design in a completely architecture-independent way.

If, for example, a built-in register preset feature is used in a simple design, the target
architectures are limited. Consider this version of the design:

module Q1_5
Q1 pin istype 'reg,buffer’;
Clock,Preset pin;

equations

Q1.CLK = Clock;
Q1.AP = Preset;
Q1 =1Q1fb;
test_vectors ([Clock,Preset] -> Q1)
[.c, 1]->1;
[.c., 0]->0;
[.c., 0]->1,
[.c., 0]->0;
[.c., 1]->1;
[.c, 1]->1;
end

The equation for Q1 still uses the := assignment operator and .FB for a pin-to-pin
description of Q1's behavior, but the use of .AP to describe the reset function
requires consideration of different device architectures. The .AP extension, like the
.D and .Q extensions, is associated with a flip-flop input, not with a device output pin.
If the target device has inverted outputs, the design will not reset properly, so this
ambiguous reset behavior is removed by using the 'buffer' attribute, which reduces
the range of target devices to those with non-inverted outputs.

ABEL-HDL Reference Manual 71

Pin-to-pin vs. Detailed Descriptions for Registered Designs

Versions 5 and 7 of the design above and below are unambiguous, but each is
restricted to certain device classes:

module Q1_7
Q1 pin istype 'reg,invert';
Clock,Preset pin;

equations

Q1.CLK = Clock;
Q1.AR = Preset;
Q1 :=1Ql.fb;
test_vectors ([Clock,Preset] -> Q1)
[.c, 1]->1;
[.c., 0]->0;
[.c., 0]->1,
[.c., 0]->0;
[.c., 1]->1;
[.c, 1]->1;
end

When to Use Detailed Descriptions

Although the pin-to-pin description is preferable, there will frequently be situations
when you must use a more detailed description. If you are unsure about which
method to use for various parts of your design, examine the design's requirements. If
your design requires specific features of a device (such as register preset or unusual
flip-flop configurations), detailed descriptions are probably necessary. If your design
is a simple combinational function or if it matches the "generic" macrocell in its
requirements, you can probably use simple pin-to-pin descriptions.

Using := for Alternative Flip-flop Types

In ABEL-HDL you can specify a variety of flip-flop types using attributes such as
istype 'reg_D' and 'reg_JK'. However, these attributes do not enforce the use of a
specific type of flip-flop when a device is selected, and they do not affect the meaning
of the := assignment operator.

You can think of the := assignment operator as a memory operator. The type of
register that most closely matches the := assignment operator's behavior is the
D-type flip-flop.

The primary use for attributes such as istype 'reg_D', 'reg_JK' and 'reg_SR'is to
control the generation of logic. Specifying one of the 'reg_" attributes (for example,
istype 'reg_D") instructs the AHDL compiler to generate equations using the .D
extension regardless of whether the design was written using .D, := or some other
method (for example, state diagrams).

ABEL-HDL Reference Manual 72

Pin-to-pin vs. Detailed Descriptions for Registered Designs

D NOTE You also need to specify istype ‘invert' or 'buffer' when you use
detailed syntax.

Using := for flip-flop types other than D-type is only possible if register synthesis
features are available to convert the generated equations into equations appropriate
for the alternative flip-flop type specified. Since the use of register synthesis to
convert D-type flip-flop stimulus into JK or SR-type stimulus usually results in
inefficient circuitry, the use of := for these flip-flop types is discouraged. Instead, you
should use the .J and .K extensions (for JK-type flip-flops) or the .S and .R
extensions (for SR-type flip-flops) and use a detailed description method (including
'invert' or 'buffer' attributes) to describe designs for these register types.

There is no provision in the language for directly writing pin-to-pin equations for

registers other than D-type. State diagrams, however, may be used to describe
pin-to-pin behavior for any register type.

ABEL-HDL Reference Manual 73

Using Active-low Declarations

Using Active-low Declarations

In ABEL-HDL you can write pin-to-pin design descriptions using implied active-low
signals. Active-low signals are declared with a 'I' operator, as shown below:

Q1 pin istype 'reg’;

If a signal is declared active-low, it is automatically complemented when you use it in
the subsequent design description. This complementing is performed for any use of
the signal itself, including as an input, as an output, and in test vectors.
Complementing is also performed if you use the .FB dot extension on an active-low
signal.

The following three designs, for example, operate identically:

Design 1 — Implied Pin-to-Pin Active-low

module act_low2
190,!gl pin istype 'reg’;

clock pin;
reset pin;
equations

[91,90].clk = clock;
[91,90] := ([91,90].FB + 1) & 'reset;

test_vectors ([clock,reset] -> [g1, q0])
[.c.,1]->[0,0]

[c,0]->[0,1]
[c.,0]>[1,0];
[c,0]->[1,1];
[c.,0]->[0,0]
[c,0]->[0,1];
[c,1]->[0,0]

end

ABEL-HDL Reference Manual 74

Using Active-low Declarations

Design 2 — Explicit Pin-to-Pin Active-low

module act_lowl

g0,q1 pin istype 'reg’;

clock pin;

reset pin;
equations

[91,90].clk = clock;

[91,90] := (Y[g1,90].FB + 1) & !reset;
test_vectors ([clock,reset] -> [!q1,!q0])

[c.,1]->[0,0];

, 0]->[1,0];
0]->[1,1]
y O]_>[010],
0]->[0,1];
1]1->[0,0];
end

Design 3 — Explicit Detailed Active-low

module act_low3
g0,g1 pinistype 'reg_d,buffer’;
clock pin;
reset pin;
equations
[91,90].clk = clock;
191,90].D := (Y[g1,90].Q + 1) & !reset;
test_vectors ([clock,reset] -> [1q1,!q0])
[c.,1]->[0,0];

end

Both of these designs describe an up counter with active-low outputs. The first
example inverts the signals explicitly (in the equations and in the test vector header),
while the second example uses an active-low declaration to accomplish the same

thing.

ABEL-HDL Reference Manual

/5

Polarity Control

Polarity Control

Automatic polarity control is a powerful feature in ABEL-HDL where a logic function is
converted for both non-inverting and inverting devices.

A single logic function may be expressed with many different equations. For example,
all three equations below for F1 are equivalent.

(1) F1 = (A & B);
(2)!F1 = I(A & B);
(3)F1 = A #B;

In the example above, equation (3) uses two product terms, while equation (1)
requires only one. This logic function will use fewer product terms in a non-inverting
device than in an inverting device. The logic function performed from input pins to
output pins will be the same for both polarities.

Not all logic functions are best optimized to positive polarity. For example, the
inverted form of F2, equation (3), uses fewer product terms than equation (2).
(1) F2=(A#B) & (C # D);

(2)F2=(A&C)#(A&D)# (B&C)# (B &D);

(3)!F2 = (1A & B) # (IC & ID);

Programmable polarity devices are popular because they can provide a mix of
non-inverting and inverting outputs to achieve the best fit.

ABEL-HDL Reference Manual 76

Polarity Control

Polarity Control with Istype

In ABEL-HDL, you control the polarity of the design equations and target device (in
the case of programmable polarity devices) in two ways:

= Using Istype 'neg’, 'pos' and 'dc’
= Using Istype 'invert' and 'buffer’

Using Istype 'neg’, 'pos', and 'dc' to Control Equation and Device Polarity
The 'neg’, 'pos’, and 'dc' attributes specify types of optimization for the polarity as

follows:

'neg’ Istype 'neg’ optimizes the circuit for negative polarity. Unspecified
logic in truth tables and state diagrams becomes a 0.

'‘pos’ Istype 'pos' optimizes the circuit for positive polarity. Unspecified

logic in truth tables and state diagrams becomes a 1.

'dc’ Istype 'dc' uses polarity for best optimization. Unspecified logic in
truth tables and state diagrams becomes don't care (X).

Using 'invert' and 'buffer’ to Control Programmable Inversion

An optional method for specifying the desired state of a programmable polarity output
is to use the 'invert' or 'buffer' attributes. These attributes ensure that an inverter gate
either does or does not exist between the output of a flip-flop and its corresponding
output pin. When you use the 'invert' and 'buffer' attributes, you can still use automatic
polarity selection if the target architecture features programmable inverters located
before the associated flip-flop.

These attributes are particularly useful for devices, where the reset and preset
behavior is affected by the programmable inverter.

D NOTE The'invert' and 'buffer' attributes do not actually control device
or equation polarity — they only enforce the existence or
nonexistence of an inverter between a flip-flop and its output
pin.

The polarity of devices that feature a fixed inverter in this location and a
programmable inverter before the register cannot be specified using ‘invert' and
‘buffer.

ABEL-HDL Reference Manual 77

Flip-flop Equations

Flip-flop Equations

Pin-to-pin equations (using the := assignment operator) are only supported for D
flip-flops. ABEL-HDL does not support the := assignment operator for T, SR or JK
flip-flops and has no provision for specifying a particular output pin value for these

types.

If you write an equation of the form:

and the output, Q1, has been declared as a T-type flip-flop, the ABEL-HDL compiler
will give a warning and convert the equation to

QLT =1;

Since the T input to a T-type flip-flop does not directly correspond to the value you
observed on the associated output pin, this equation will not result in the pin-to-pin
behavior you want.

To produce specific pin-to-pin behavior for alternate flip-flop types, you must consider
the behavior of the flip-flop you used and write detailed equations that stimulate the

inputs of that flip-flop. A detailed equation to set and hold a T-type flip-flop is shown
below:

Q1.T=!Q1.Q;

ABEL-HDL Reference Manual 78

Feedback Considerations — Using Dot Extensions

Feedback Considerations — Using Dot Extensions

The source of feedback is normally set by the architecture of the target device. If you
do not specify a particular feedback path, the design may operate differently in
different device types. Specifying feedback paths (with the .FB, .Q or .PIN dot
extensions) eliminates architectural ambiguities. Specifying feedback paths also
allows you to use architecture-independent simulation.

The following rules should be kept in mind when you are using feedback:

= No Dot Extension — A feedback signal with no dot extension (for example, count
:= count+1;) results in pin feedback if it exists in the target device. If there is no pin
feedback, register feedback is used, with the value of the register contents
complemented (normalized) if needed to match the value observed on the pin.

s .FB Extension — A signal specified with the .FB extension (for example, count
:= count.fb+1;) results in register feedback normalized to the pin value if a register
feedback path exists. If no register feedback is available, pin feedback is used,
and the fuse mapper checks that the output enable does not conflict with the pin
feedback path. If there is a conflict, an error is generated if the output enable is not
constantly enabled.

s .COMExtension — A signal specified with the .COMextension (for example,
count := count.com+1;) results in OR-array (pre-register) feedback, normalized to
the pin value if an OR-array feedback path exists. If no OR-array feedback is
available, pin feedback is used and the fuse mapper checks that the output enable
does not conflict with the pin feedback path. If there is a conflict, an error is
generated if the output enable is not constantly enabled.

= .PIN Extension — If a signal is specified with the .PIN extension (for example,
count := count.pin+1;), the pin feedback path will be used. If the specified device
does not feature pin feedback, an error will be generated. Output enables
frequently affect the operation of fed-back signals that originate at a pin.

= .Q Extension — Signals specified with the .Q extension (for example, count.d =
count.qg + 1;) will originate at the Q output of the associated flip-flop. The fed-back
value may or may not correspond to the value you observe on the associated
output pin; if an inverter is located between the Q output of the flip-flop and the
output pin (as is the case in most registered PAL-type devices), the value of the
fed-back signal will be the complement of the value you observe on the pin.

s .D Extension — Some devices allow feedback of the input to the register. To
select this feedback, use the .D extension. Some device kits also support .COM
for this feedback.

ABEL-HDL Reference Manual 79

Feedback Considerations — Using Dot Extensions

Dot Extensions and Architecture-independence

To be architecture-independent, you must write your design in terms of its pin-to-pin
behavior rather than in terms of specific device features (such as flip-flop
configurations or output inversions).

For example, consider the simple circuit shown in Figure 2-3. This circuit toggles high

when the Toggle input is forced high, and low when the Toggle is low. The circuit also
contains a three-state output enable that is controlled by the active-low Enable input.

0<} Ena
l

D Q
Toggle ————— J

Qout

Clk >

Figure 2-3. Dot Extensions and Architecture-Independence: Circuit 1

The following simple ABEL-HDL design (Figure 2-4) describes this simple one-bit
synchronous circuit. The design description uses architecture-independent dot
extensions to describe the circuit in terms of its behavior, as observed on the output
pin of the target device. Since this design is architecture-independent, it will operate
the same (disregarding initial powerup state), irrespective of the device type.

ABEL-HDL Reference Manual 80

Feedback Considerations — Using Dot Extensions

module pin2pin

Clk pin 1;

Toggle pin 2;

Ena pin 11;

Qout pin 19 istype 'reg’;
equations

Qout :=!Qout.FB & Toggle;

Qout.CLK = CIk;
Qout.OE =!Ena;

test_vectors([Clk,Ena,Toggle] -> [Qout])

[c,0, 0]-> O
[c,0,1]-> 1,
[c,0,1]-> O
[c,0,1]-> 1,
[c,0,1]-> O
[c,1,1 1> .Z;
[0,0,1]-> 1;
[c,1,1]1-> .Z;
[0,0,1]-> O

end

Figure 2-4. Pin to Pin One-bit Synchronous Circuit

If you implement this circuit in a simple GAL16LV8 device, the result will be a circuit
like the one illustrated in Figure 2-5. Since the features inverted outputs, the design
equation is automatically modified to take the feedback from Q-bar instead of Q.

uf-

T
b

Figure 2-5. Dot Extensions and Architecture-independence: Circuit 2
If you implement this design in a device with a different architecture, the resulting

circuit could be quite different. But, because this is a pin-to-pin design description, the
circuit behavior is the same.

ABEL-HDL Reference Manual 81

Feedback Considerations — Using Dot Extensions

Dot Extensions and Detail Design Descriptions

You may need to be more specific about how you implement a circuit in a target
device. More-complex device architectures have many configurable features, and you
may want to use these features in a particular way. You may want a precise powerup
and preset operation or, in some cases, you may need to control internal elements.

The circuit previously described (using architecture-independent dot extensions)
could be described, for example, using detailed dot extensions in the following
ABEL-HDL source file (Figure 2-6):

module detaill

Clk pin 1;

Toggle pin 2;

Ena pin 11;

Qout pin 19 istype 'reg_D';
equations

IQout.D = Qout.Q & Toggle;f
Qout.CLK = CIk;
Qout.OE =!Ena;

test_vectors([Clk,Ena,Toggle] -> [Qout])
[c,0,0]-> O;

oNpPNORrRORO

VVVVVVVYV

1

end

Figure 2-6. Detail One-bit Synchronous Circuit with Inverted Qout

This version of the design will result in exactly the same fuse pattern as indicated in
Figure 2-5. As written, this design assumes the existence of an inverted output for the
signal Qout. This is why the Qout.D and Qout.Q signals are reversed from the
architecture-independent version of the design presented earlier.

D NOTE The inversion operator applied to Qout.D does not correspond
directly to the inversion found on each output of a GAL16LV8.
The equation for Qout.D actually refers to the D input of one of
the GAL16LV8's flip-flops; the output inversion found in a
GAL16LV8 is located after the register and is assumed rather
than specified.

ABEL-HDL Reference Manual 82

Feedback Considerations — Using Dot Extensions

To implement this design in a device that does not feature inverted outputs, the
design description must be modified. The following example (Figure 2-7) shows how
to write this detailed design for the device that does not feature inverted outputs:

module detail2

Clk pin1;

Toggle pin 2;

Ena pin 11;

Qout pin 19 istype 'reg_D';
equations

Qout.D =!Qout.Q & Toggle;

Qout.CLK = CIk;

Qout.OE =!Ena;
test_vectors([Clk,Ena,Toggle] -> [Qout])

[c,0,0]1-> O
[c,0,1]1-> 1;
[c,0,1]-> O;
[c,0,1]-> 1,
[c,0,1]-> O
[c,1,1]-> .Z;
[0,0,1]-> 1;
[c,1,1 1> .Z;
[0,0,1]-> O

end

Figure 2-7. Detail One-bit Synchronous Circuit with Non-inverted Qout

ABEL-HDL Reference Manual 83

Using Don't Care Optimization

Using Don't Care Optimization

Use Don't Care optimization to reduce the amount of logic required for an
incompletely specified function. The @Dcset directive (used for logic description
sections) and Istype attribute 'dc' (used for signals) specify don't care values for

unspecified logic.

Consider the following ABEL-HDL truth table:

truth_table ([i3,i2,i1,i0]->[f3,12,f1,f0])
[0,0,0, O]->[0,0,0, 1]

1]

This truth table has four inputs, and therefore sixteen (24) possible input
combinations. The function specified, however, only indicates eight significant input
combinations. For each of the design outputs (f3 through f0) the truth table specifies
whether the resulting value should be 1 or 0. For each output, then, each of the eight
individual truth table entries can be either a member of a set of true functions called

the on-set, or a set of false functions called the off-set.

Using output 3, for example, the eight input conditions can be listed as on-sets and
off-sets as follows (maintaining the ordering of inputs as specified in the truth table

above):
on-set of f3 off-set of 3
0111 0000
1111 0001
1110 0011
1100 1000

The remaining eight input conditions that do not appear in either the on-set or off-set

are said to be members of the dc-set, as follows for f3:
dc-set of f3

0010
0100
0101
0110
1001
1010
1011
1101

ABEL-HDL Reference Manual

84

Using Don't Care Optimization

Expressed as a Karnaugh map, the on-set, off-set and dc-set would appear as
follows (with ones indicating the on-set, zeroes indicating the off-set, and dashes
indicating the dc-set):

01| - - 1 -
11 1 - 1 1
10 @ - - -

If the don't-care entries in the Karnaugh map are used for optimization, the function
for 3 can be reduced to a single product term (f3 = i2) instead of the two (f3 = i3 & i2
& 0 #1i2 & i1 & i0) otherwise required.

The ABEL-HDL compiler uses this level of optimization if the @Dcset directive or
Istype 'dc’ is included in the ABEL-HDL source file, as shown in Figure 2-8.

module dc
i3,i2,i1,i0 pin;
f3,f2,f1,f0 pin istype 'dc,com’;

truth_table ([i3,i2,i1,i0]->[f3,f2,f1,f0])

[0,0,0,0]->[0,0,0, 1];

,1]->[0,0, 1, 1];
,1]->[0, 1, 1, 1];
,1->[1,
1]->[
0]->[
0]->[
0]->[

1,1,1]
1,1,0]
,1,0,0];
0,0, 0]
0,0, 0]

[0,0,0
[0,0,1
[0,1,1
[1,1,1
[1,1,1
[1,1,0
[1,0,0

1
1
1
0

end

Figure 2-8. Source File Showing Don't Care Optimization

This example results in a total of four single-literal product terms, one for each output.
The same example (with no istype 'dc’) results in a total of twelve product terms.

For truth tables, Don't Care optimization is almost always the best method. For state
machines, however, you may not want undefined transition conditions to result in

ABEL-HDL Reference Manual 85

Exclusive OR Equations

unknown states, or you may want to use a default state (determined by the type of
flip-flops used for the state register) for state diagram simplification.

When using don't care optimization, be careful not to specify overlapping conditions
(specifying both the on-set and dc-set for the same conditions) in your truth tables
and state diagrams. Overlapping conditions result in an error message.

For state diagrams, you can perform additional optimization for design outputs if you
specify the @Dcstate attribute. If you enter @Dcstate in the source file, all state
diagram transition conditions are collected during state diagram processing. These
transitions are then complemented and applied to the design outputs as don't-cares.
You must use @Dcstate in combination with @Dcset or the 'dc' attribute.

Exclusive OR Equations

Designs written for exclusive-OR (XOR) devices should contain the 'xor' attribute for
architecture-independence.

Optimizing XOR Devices
You can use XOR gates directly by writing equations that include XOR operators, or

you can use implied XOR gates. XOR gates can minimize the total number of product
terms required for an output or they can emulate alternate flip-flop types.

Using XOR Operators in Equations

If you want to write design equations that include XOR operators, you must either
specify a device that features XOR gates in your ABEL-HDL source file, or specify the
'xor" attribute for all output signals that will be implemented with XOR gates. This
preserves one top-level XOR operator for each design output. For example,

module X1
Q1 pin istype '‘com,xor’;
a,b,c pin;

equations
Ql=a$bé&c;

end

Also, when writing equations for XOR PALSs, you should use parentheses to group
those parts of the equation that go on either side of the XOR. This is because the
XOR operator ($) and the OR operator (#) have the same priority in ABEL-HDL.

ABEL-HDL Reference Manual 86

Exclusive OR Equations

Using Implied XORs in Equations

High-level operators in equations often result in the generation of XOR operators. If
you specify the '"XOR' attribute, these implied XORs are preserved, decreasing the
number of product terms required. For example,

module X2
03,02,91,g0 pin istype 'reg,xor’;
clock pin;
count = [g3..q0];
equations
count.clk = clock;
count := count.FB + 1;
end

This design describes a simple four-bit counter. Since the addition operator results in
XOR operators for the four outputs, the 'xor' attribute can reduce the amount of
circuitry generated.

D NOTE The high-level operator that generates the XOR operators
must be the top-level (lowest priority) operation in the
equation. An equation such as
count := (count.FB + 1) & Ireset ;
does not result in the preservation of top-level XOR operators,
since the & operator is the top-level operator.

Using XORs for Flip-flop Emulation

Another way to use XOR gates is for flip-flop emulation. If you are using an XOR
device that has outputs featuring an XOR gate and D-type flip-flops, you can write
your design as if you were going to be implementing it in a device with T-type flip-
flops. The XOR gates and D-type flip-flops emulate the specified T-type flip-flops.
When using XORs in this way, you should not use the 'xor' attribute for output signals
unless the target device has XOR gates.

JK Flip-Flop Emulation

You can emulate JK flip-flops using a variety of circuitry found in programmable
devices. When a T-type flip-flop is available, you can emulate JK flip-flops by ANDing
the Q output of the flip-flop with the K input. The !Q output is then ANDed with the J
input.

ABEL-HDL Reference Manual 87

Exclusive OR Equations

Figure 2-9 illustrates the circuitry and the Boolean expression.

AND2 Preset
3 Clear

A
N |-
—

FF

l _

, ore | agg

AND2 | 3 3 |2

1 2 i
> fo] B

Clock

—

Q:=(J&!IQ)#(K&Q)

Figure 2-9. JK Flip-flop Emulation Using T Flip-flop

You can emulate a JK flip-flop with a D flip-flop and an XOR gate. The circuitry and
Boolean expression is shown below in Figure 2-10.

Q

)

]
v}

FF

_|
\I:\/H

w
IN wL\)J\»—-
Vg ol vl

o]

Q:=T$Q

Figure 2-10. T Flip-flop Emulation Using D Flip-flop

Finally, you can also emulate a JK flip-flop by combining the D flip-flop emulation of a

T flip-flop, in Figure 2-9, with the circuitry of Figure 2-10. Figure 2-11 illustrates this
concept.

ABEL-HDL Reference Manual 88

Exclusive OR Equations

~

(&N

N[

AND2

XOR

OR2 1
AND2 L 1 3 2 8
1 3 2

Preset
Clear D FF
1 —
292 Q
—c3 C
4
> D Q
Clock

Q:=(Q$(J&!Q#K&Q)

Figure 2-11. JK Flip-flop Emulation, D Flip-flop with XOR

ABEL-HDL Reference Manual

89

State Machines

State Machines

A state machine is a digital device that traverses a predetermined sequence of states.
State-machines are typically used for sequential control logic. In each state, the
circuit stores its past history and uses that history to determine what to do next.

This section provides some guidelines to help you make state diagrams easy to read
and maintain and to help you avoid problems. State machines often have many
different states and complex state transitions that contribute to the most common
problem, which is too many product terms being created for the chosen device. The
topics discussed in the following subsections help you avoid this problem by reducing
the number of required product terms.

The following subsections provide state machine considerations:

= Use Identifiers Rather Than Numbers for States

» Powerup Register States

= Unsatisfied Transition Conditions, D-type Flip-flops
= Unsatisfied Transition Conditions, Other Flip-flops
= Number Adjacent States for a One-bit Change

m Use State Register Outputs to Identify States

= Use Symbolic State Descriptions

Use ldentifiers Rather Than Numbers for States

A state machine has different "states" that describe the outputs and transitions of the
machine at any given point. Typically, each state is given a name, and the state
machine is described in terms of transitions from one state to another. In a real
device, such a state machine is implemented with registers that contain enough bits
to assign a unique number to each state. The states are actually bit values in the
register, and these bit values are used along with other signals to determine state
transitions.

As you develop a state diagram, you need to label the various states and state
transitions. If you label the states with identifiers that have been assigned constant
values, rather than labeling the states directly with numbers, you can easily change
the state transitions or register values associated with each state.

When you write a state diagram, you should first describe the state machine with
names for the states, and then assign state register bit values to the state names.

ABEL-HDL Reference Manual 90

State Machines

For an example, see Figure 2-12, which lists the source file for a state machine
named "sequence." (This state machine is also discussed in the design examples.)
Identifiers (A, B, and C) specify the states. These identifiers are assigned a constant
decimal value in the declaration section that identifies the bit values in the state
register for each state. A, B, and C are only identifiers: they do not indicate the bit
pattern of the state machine. Their declared values define the value of the state
register (sreg) for each state. The declared values are 0, 1, and 2.

module Sequence
title 'State machine example';

g1,q0 pin 14,15 istype 'reg’;
clock,enab,start,hold,reset pin 1,11,4,2,3;
halt pin 17 istype 'reg’;
in_B,in_C pin 12,13 istype 'com’;
sreg = [q1,90];

"State Values...
A=0; B =1, C=2

equations

[91,q0,halt].clk = clock;
[91,90,halt].oe = !enab;
state diagram sreg;

State A: " Hold in state A until start is active.
in_B=0;
in_C=0;

IF (start & !reset) THEN B WITH halt := 0;
ELSE A WITH halt := halt.fb;

State B: " Advance to state C unless reset is active
in_B =1, " or hold is active. Turn on halt indicator
in_C=0; " if reset.

IF (reset) THEN A WITH halt := 1,
ELSE IF (hold) THEN B WITH halt := 0;
ELSE C WITH halt := 0;

State C: " Go back to A unless hold is active
in_ B=0; " Reset overrides hold.
in_ C=1,

IF (hold & !reset) THEN C WITH halt := 0;
ELSE A WITH halt := 0;

Figure 2-12. Using Identifiers for States

ABEL-HDL Reference Manual 91

State Machines

test_vectors([clock,enab,start,reset,hold]->[sreg,halt,in_B,in_C])
[p.,0,0,0,0]>A,0,0,0]

[c.,0,0,0,0]>[A,0,0,0]
[c.,0,1,0,0]>B,0,1, 0]
[c.,0,0,0,0]>C,0,0,1]
[c.,0,1,0,0]>A,0,0,O0]
[c.,0,1,0,0]>[B,0,1, 0]
[c.,0,0,1,0]>A,1,0,0]
[c.,0,0,0,0]>[A,1,0, 0]
[c.,0,1,0,0]>B,0,1,0];
[c.,0,0,0,1]>[B,0,1,0]
[c.,0,0,0,1]>[B,0,1,0]
[c.,0,0,0,0]>C,0,0,1]

end

Figure 2-12. Using ldentifiers for States (Continued)

Powerup Register States

If a state machine has to have a specific starting state, you must define the register
powerup state in the state diagram description or make sure your design goes to a
known state at powerup. Otherwise, the next state is undefined.

Unsatisfied Transition Conditions

D-type Flip-flops

For each state described in a state diagram, you specify the transitions to the next
state and the conditions that determine those transitions. For devices with D-type
flip-flops, if none of the stated conditions are met, the state register, shown in
Figure 2-13, is cleared to all Os on the next clock pulse. This action causes the state
machine to go to the state that corresponds to the cleared state register. This can
either cause problems or you can use it to your advantage, depending on your
design.

ABEL-HDL Reference Manual 92

State Machines

D-type Register with False Inputs

NO PRODUCT TERM

NO PRODUCT TERM

NO PRODUCT TERM q

NO PRODUCT TERM D_ LOGIC
NO PRODUCT TERM D Q Fo

NO PRODUCT TERM

NO PRODUCT TERM

NO PRODUCT TERM

Ol

<

Figure 2-13. D-type Register with False Inputs

You can use the clearing behavior of D-type flip-flops to eliminate some conditions in
your state diagram and some product terms in the converted design by leaving the
cleared-register state transition implicit. If no specified transition condition is met, the
machine goes to the cleared-register state. This behavior can also cause problems if
the cleared-register state is undefined in the state diagram, because if the transition
conditions are not met for any state, the machine goes to an undefined state and
stays there.

To avoid problems caused by this clearing behavior, always have a state assigned to
the cleared-register state. Or, if you do not assign a state to the cleared-register state,
define every possible condition so some condition is always met for each state. You
can also use the automatic transition to the cleared-register state by eliminating
product terms and explicit definitions of transitions. You can also use the cleared-
register state to satisfy illegal conditions.

Other Flip-flops

If none of the state conditions is met in a state machine that employs JK, RS, and
T-type flip-flops, the state machine does not advance to the next state, but holds its
present state due to the low input to the register from the OR array output. In such a
case, the state machine can get stuck in a state. You can use this holding behavior to
your advantage in some designs.

If you want to prevent the hold, you can use the complement array provided in some
devices to detect a "no conditions met" situation and reset the state machine to a
known state.

ABEL-HDL Reference Manual 93

State Machines

Precautions for Using Don't Care Optimization

When you use don't care optimization, you need to avoid certain design practices.
The most common design technique that conflicts with this optimization is mixing
equations and state diagrams to describe default transitions. For example, consider
the design shown in Figure 2-14.

module TRAFFIC
title 'Traffic Signal Controller'
Clk,SenA,SenB pin 1,8, 7,
PR pin 16; "Preset control
GA, YA RA pin 15..13;
GB,YB,RB pin 11..9;
"Node numbers are not required if fitter is used
S3..S0 node 31..34 istype 'reg_sr,buffer’;
COMP node 43;
H,L,Ck,X =1,0,.C, .X,;
Count =[S3..50];
"Define Set and Reset inputs to traffic light flip-flops
GreenA =[GA.S,GA.R];
YellowA = [YA.S,YA.R];
RedA =[RA.S,RA.R];
GreenB =[GB.S,GB.R];
YellowB =[YB.S,YB.R];
RedB =[RB.S,RB.R];
On =[1,0]

off =[0, 1];
" test_vectors edited
equations

[GB,YB,RB].AP = PR;
[GA,YA,RA].AP = PR;
[GB,YB,RB].CLK = CIk;
[GA YA ,RA].CLK = CIk;
[S3..S0].AP = PR;
[S3..S0].CLK = CIk;
"Use Complement Array to initialize or restart
[S3..S0].R = (ICOMP & [1,1,1,1));
[GreenA,YellowA,RedA] = (ICOMP & [On ,Off,0Off]);
[GreenB,YellowB,RedB] = (ICOMP & [Off,Off,On]);

Figure 2-14. State Machines with Conflicting Logic

ABEL-HDL Reference Manual 94

State Machines

state_diagram Count

State 0: if (SenA & !SenB) then 0 with COMP =1,

if !SenA & SenB) then 4 with COMP = 1,

if (SenA == SenB) then 1 with COMP = 1;
State 1: goto 2 with COMP =1,
State 2: goto 3 with COMP =1,
State 3: goto 4 with COMP =1,
State 4: GreenA = Off;

YellowA =On ;

goto 5 with COMP =1,
State 5: YellowA = Off;

RedA =0On;
RedB = Off;
GreenB =0n;

goto 8 with COMP =1,

State 8: if !SenA & SenB) then 8 with COMP = 1;
if (SenA & !SenB) then 12 with COMP = 1,
if (SenA == SenB) then 9 with COMP = 1;

State 9: goto 10 with COMP = 1;

State 10: goto 11 with COMP = 1;

State 11: goto 12 with COMP =1,

State 12: GreenB = Off;
YellowB = On ;
goto 13 with COMP = 1;

State 13: YellowB = Off;

RedB =0On;
RedA = Off;
GreenA =0n;

goto O with COMP =1,
end

Figure 2-14. State Machines with Conflicting Logic (Continued)

If you use the @Dcset directive, the equation that specifies this transition
[S3,52,51,S0].R = ({COMP & [1,1,1,1]);

ABEL-HDL Reference Manual 95

State Machines

Figure 2-15 @Dcset-compatible State Machine Description will conflict with the dc-
set generated by the state diagram for S3.R, S2.R, S1.R, and SO.R . If equations are
defined for state bits, the @Dcset directive is incompatible. This conflict would result
in an error and failure when the logic for this design is optimized.

To correct the problem, you must remove the @Dcset directive so the implied dc-set
equations are folded into the off-set for the resulting logic function. Another option is
to rewrite the module as shown in Figure 2-15.

module TRAFFIC1
title 'Traffic Signal Controller'

"Define Set and Reset inputs to traffic light flip flops

" test_vectors edited
equations

Clk,SenA,SenB pin 1,8, 7;

PR pin 16; "Preset control
GA,YA,RA pin 15..13;

GB,YB,RB pin 11..9;

S3..S0 node 31..34 istype 'reg_sr,buffer’;
H,L,Ck,X =1,0,.C, .X,;
Count =[S3..50];

GreenA =[GA.S,GAR];
YellowA = [YA.S,YA.R];
RedA =[RA.S,RA.R];
GreenB =[GB.S,GB.R];
YellowB = [YB.S,YB.R];
RedB =[RB.S,RB.R];
On =[1,0];

off =[0, 1];

[GB,YB,RB].AP = PR;
[GA,YA,RA].AP = PR;
[GB,YB,RB].CLK = CIk;
[GA,YA,RA].CLK = CIK;
[S3..S0].AP = PR;
[S3..S0].CLK = CIk;

Figure 2-15. @Dcset-compatible State Machine Description

ABEL-HDL Reference Manual 96

State Machines

@Dcset

state_diagram Count

State 0:

State 1:
State 2:
State 3:

State 4:

State 5:

State 6:

State 7:
State 8:

State 9:

State 10:
State 11:
State 12:

State 13:

State 14:
State 15:

end

if (SenA & !SenB) then 0;
if !SenA & SenB) then 4;
if (SenA == SenB) then 1;
goto 2;
goto 3;
goto 4;

GreenA = Off;
YellowA =0On ;
goto 5;
YellowA = Off;
RedA =0n;
RedB = Off;
GreenB =0n;
goto 8;
goto O;
goto O;
if ISenA & SenB) then 8;
if (SenA & !SenB) then 12;
if (SenA == SenB) then 9;
goto 10;
goto 11,
goto 12;
GreenB = Off;
YellowB = On;
goto 13;
YellowB = Off;
RedB =0n;
RedA = Off;
GreenA =0On;
goto O;
goto O;
"Power up and preset state
RedA = Off;
YellowA = Off;
GreenA =0On;
RedB =0n;
YellowB = Off;
GreenB = Off;
goto O;

Figure 2-15. @Dcset-compatible State Machine Description (Continued)

ABEL-HDL Reference Manual

97

State Machines

Number Adjacent States for One-bit Change

You can reduce the number of product terms produced by a state diagram by
carefully choosing state register bit values. Your state machine should be described
with symbolic names for the states, as described above. Then, if you assign the
numeric constants to these names so the state register bits change by only one bit at
a time as the state machine goes from state to state, you will reduce the number of
product terms required to describe the state transitions.

As an example, take the states A, B, C, and D, which go from one state to the other in
alphabetical order. The simplest choice of bit values for the state register is a numeric
sequence, but this is not the most efficient method. To see why, examine the following
bit value assignments. The preferred bit values cause a one-bit change as the
machine moves from state B to C, whereas the simple bit values cause a change in
both bit values for the same transition. The preferred bit values produce fewer product

terms.
Simple Preferred
State Bit Values Bit Values
00 00
B 01 01
C 10 11
D 11 10

If one of your state register bits uses too many product terms, try reorganizing the bit
values so that state register bit changes in value as few times as possible as the state
machine moves from state to state.

Obviously, the choice of optimum bit values for specific states can require some
tradeoffs; you may have to optimize for one bit and, in the process, increase the value
changes for another. The object should be to eliminate as many product terms as
necessary to fit the design into the device.

ABEL-HDL Reference Manual 98

State Machines

Use State Register Outputs to Identify States

Sometimes it is necessary to identify specific states of a state machine and signal an
output that the machine is in one of these states. Fewer equations and outputs are
needed if you organize the state register bit values so one bit in the state register
determines if the machine is in a state of interest. Take, for example, the following
sequence of states in which identification of the Cn states is required:

State Register Bit Values

State Name Q3 Q2 Q1
A 0 0 0

B 0 0 1

C1 1 0 1

Cc2 1 1 1

C3 1 1 0

D 0 1 0

This choice of state register bit values allows you to use Q3 as a flag to indicate when
the machine is in any of the Cn states. When Q3 is high, the machine is in one of the
Cn states. Q3 can be assigned directly to an output pin on the device. Notice also that
these bit values change by only one bit as the machine cycles through the states, as
is recommended in the section above.

Using Symbolic State Descriptions

Symbolic state descriptions describe a state machine without having to specify actual
state values Symbolic state descriptions. A symbolic state description is shown in
Figure 2-16.

ABEL-HDL Reference Manual 99

State Machines

module SM
a,b,clock pin;
a_reset,s_reset pin;
X,y pin istype ‘com’;

sregl state_register;
S0..S3 state;

equations
sregl.clk = clock;

state_diagram sregl
state SO:
goto S1 with {x =a & b;
y=0; }
state S1:if (a & b)
then S2 with {x = 0;
y=1}
state S2: x=a & b;
y=1,
if (@) then S1 else S2;
state S3:
goto SO with {x = 1;
y=0;}

async_reset SO: a_reset;
sync_reset SO: s_reset;
end

" inputs
" reset inputs
" simple outputs

Figure 2-16. Symbolic State Description

Symbolic state descriptions use the same syntax as non-symbolic state descriptions;
the only difference is the addition of the State register and State declarations, and
the addition of symbolic synchronous and asynchronous reset statements.

ABEL-HDL Reference Manual

100

State Machines

Symbolic Reset Statements

In symbolic state descriptions, the SYNC_RESET and ASYNC_RESET statements
specify synchronous or asynchronous state machine reset logic. For example, to

specify that a state machine must asynchronously reset to state Start when the Reset
input is true, you write

ASYNC_RESET Start : (Reset) ;

Symbolic Test Vectors

You can also write test vectors to refer to symbolic state values by entering the
symbolic state register name in the test vector header (in the output sections), and
the symbolic state names in the test vectors as output values.

ABEL-HDL Reference Manual 101

chapter 3 Designing with CPLDs

ABEL-HDL allows you to generate source files with efficient logic for CPLDs,
including ispLSI devices.

CPLD Design Strategies

The following design strategies are helpful when designing for CPLDs. You will find
more detailed information in later sections.

m Define external and internal signals with PIN and NODE statements, respectively.

m For state machines and truth tables, include @Dcset (or 'dc’ attributes) if possible,
since it usually reduces logic.

m Use only dot extensions that are appropriate for CPLD designs. You can find
information about using dot extensions in the specific CPLD fitter user manuals.

= Use intermediate signals to create multi-level logic to match CPLD architectures.

Declaring Signals

The first step in creating a logic module for a CPLD is to declare the signals in your
design. In ABEL-HDL, you do this with PIN and NODE statements.

Pin PIN statements indicate external signals (used as inputs and
outputs to the functional block). Pin numbers are optional in
ABEL-HDL and are not recommended for CPLDs, since pin
statements do not actually generate pins on the device
package. If you declare an external signal as a node instead
of a pin, the compiler may interpret the signal incorrectly and
delete it.

Node NODE statements indicate internal signals (not accessible by
circuitry outside the functional block). Signals declared as
nodes are expected to have a source and loads.

For example, Figure 3-1 shows a state machine as a functional block. State bits S1
through S7 are completely internal; all other signals are external.

ABEL-HDL Reference Manual 102

CPLD Design Strategies

FLMCTIONAL BLOCK

[N 02
1 o1
|2
I3
=tate bits used
internally anly.
CLOCK
RESET

Figure 3-1. Hypothetical State Machine as a Functional Block

Figure 3-2 shows the corresponding signal declarations. The CLOCK, RESET, input,
and output signals must connect with circuitry outside the functional block, so they
are declared as pins. The state bits are not used outside the functional block, so they
are declared as nodes.

CLOCK, RESET Pin;
10,11,12,13 Pin;
01,02 Pin;

S7,56,5S5,54,S3,52,S1 Node;

Figure 3-2. Signal Declarations

Using Intermediate Signals

An intermediate signal is a combinatorial signal that is declared as a node and used
as a component of other more complex signals in a design. Intermediate signals
minimize logic by forcing it to be factored. Creating intermediate signals in an
ABEL-HDL logic description has the following benefits:

= Reduces the amount of optimization a compiler has to perform

= Increases the chances of a fit

m Simplifies the ABEL-HDL source file
Figure 3-4 shows a schematic of combinational logic. Signals A, B, C, D, and E are

inputs; X and Y are outputs. There are no intermediate signals; every declared signal
is an input or an output to the subcircuit.

ABEL-HDL Reference Manual 103

CPLD Design Strategies

Figure 3-3 shows the ABEL-HDL declarations and equations that would generate the
logic shown in Figure 3-4.

"declarations
A, B, C,D, E pin;
X, Y pin;

equations
X = (A&B&C) # (B$C);
Y = (A&D) # (A&E) # (A&B&C);

Figure 3-3. Declarations and Equations

FUNCTIONAL BLOCK

==p=

z 'DjD

: O

T
B

0

Figure 3-4. Schematic without Intermediate Signal

Figure 3-6 shows the same logic using an intermediate signal, M, which is declared
as a node and named, but is used only inside the subcircuit as a component of other,
more complex signals.

Figure 3-5 shows the declarations and equations that would generate the logic shown
in Figure 3-6.

ABEL-HDL Reference Manual 104

CPLD Design Strategies

"declarations
A B,C,D, E pin;
X, Y pin;
M node;

equations

"intermediate signal equations
M = A&B&C,;
X =M # (B$C);
Y = (A&D) # (A&E) # M;

Figure 3-5. Declarations and Equations

FUNCTIOMNAL BLOCK,

>

1 M

u

LﬁU

Figure 3-6. Schematic with Intermediate Signal M

Both design descriptions are functionally the same. Without the intermediate signal,
compilation generates the AND gate associated with A&B&C twice, and the device
compiler must filter out the common term. With the intermediate signal, this
sub-signal is generated only once as the intermediate signal, M, and the compiler has
less to do.

Using intermediate signals in a large design, targeted for a complex PLD, can save
compiler optimization effort and time. It also makes the design description easier to
interpret. As another example, compare the state machine descriptions in Figure 3-7
and Figure 3-8. Note that Figure 3-8 is easier to read.

ABEL-HDL Reference Manual 105

CPLD Design Strategies

CASE
which_code_enter==from_disarmed_ready:
CASE
(sens_code==sens_off) & (key_code!=key pound)
& (key_codel=key_star)
& (key_codel=key none):
code_entry ?X WITH {
which_code_enter := which_code_enter; }

(key_code==sens_off) & (key_code==key none):
code_entry ?Y WITH {

which_code_enter := which_code_enter; }
(key_code==key pound) # (key_code==key_star):
error,
(sens_code!=sens_off):
error;
ENDCASE

which_code_enter==from_armed:
CASE
(key_code!=key_pound)
& (key_code!=key_star)
& (key_code!=key none):
code_entry ?X WITH {
which_code_enter := which_code_enter;
((key_code==key_pound) # (key_code==key_star)):
armed WITH {
which_code_enter := which_code_enter; }
(key_code==key_none):
code_entry ?Y WITH {
which_code_enter := which_code_enter; }
ENDCASE
ENDCASE

Figure 3-7. State Machine Description without Intermediate Signals

ABEL-HDL Reference Manual

106

CPLD Design Strategies

CASE
enter_from_disarmed_ready:
CASE

sensors_off & key _numeric:
code_entry ?X WITH {

which_code_enter := which_code_enter; }
sensors_off & key_none:
code_entry ?Y WITH {

which_code_enter := which_code_enter; }
key pound_star:
error;

Isensors_off:
error,

ENDCASE
enter_from_armed:
CASE
key numeric:
code_entry ?X WITH {
which_code_enter := which_code_enter; }
key pound_star:
armed WITH {
which_code_enter := which_code_enter; }
key none:
code_entry ?Y WITH {
which_code_enter := which_code_enter; }

ENDCASE

ENDCASE

Figure 3-8. State Machine Description with Intermediate Signals

ABEL-HDL Reference Manual

107

CPLD Design Strategies

The declarations and equations required to create the intermediate signals used in
Figure 3-8 are shown in Figure 3-9.

"pin and node declarations
sens_code_ 0, sens_code 1,
sens_code_2, sens_code_3 pin;

key code O, key code 1,
key code 2, key code 3 pin;

which_code_enter_0,
which_code enter_1,
which_code_enter_2 node istype 'reg’;

"set declarations
which_code_enter = which_code_enter_0..which_code_enter_2];
sens_code =[sens_code_0..sens_code_3];
key code = [key code_ O ..key code_3];

"code-entry sub-states
from_disarmed_ready =11, 0, O];

from_armed =10, 0, 0];

sens_off =10, 0, 0, 0];
"key encoding

key pnd =[1, 1,0, 0];

key str =][1,0, 1, 1];

key non =]0, 0,0, 0];

"Intermediate signals
enter_from_disarmed_ready node;

enter_from_armed node;
sensors_off node;
key numeric node;
key none node;
key pound_star node;

Figure 3-9. Intermediate Signal Declarations and Equations

ABEL-HDL Reference Manual 108

CPLD Design Strategies

equations
"intermediate equations
enter_from_disarmed_ready =
(which_code_enter==from_disarmed_ready);
enter_from_armed = (which_code_enter==from_armed);
sensors_off = (sens_code==sens_off);
key numeric = (key_code!=key pnd)
& (key_codel=key_str)
& (key_codel=key non);

key none = (key_code==key_non);

key pound_star = (key_code==key pnd)
(key_code==key_str);

Figure 3-9. Intermediate Signal Declarations and Equations (Continued)

For large designs, using intermediate signals can be essential. An expression such

as

IF (input==code_1) . ..

generates a product term (AND gate). If the input is 8 bits wide, so is the AND gate. If
the expression above is used 10 times, the amount of logic generated will cause long
run times during compilation and fitting, or may cause fitting to fail.

If you write the expression as an intermediate equation,

code_1 found node;

equations
code_1 found = (input==code_1);

you can use the intermediate signal many times without creating an excessive
amount of circuitry.

IF code_1 found...

Another way to create intermediate equations is to use the @Carry directive. The

@Carry directive causes comparators and adders to be generated using intermediate
equations for carry logic. This results in an efficient multilevel implementation.

ABEL-HDL Reference Manual 109

CPLD Design Strategies

L

v 9

OTHER
FUMCTIOMAL
BLOCK STATE e
(Implemented MACHIME
by lower-lawel il o
i mplaments
schematics) o ABEL
—=
STATE
MACHIME —=
FUﬁg?E:T'JAL (Implemarited —=
BLOCH by ABEL)
{Implemented =
by lomer-lewel
schematics)
|
B
o D
X LN 0 — o OTHER —
] FUMCTIOMNAL |
|_ BLOCK
) [Implemented R

ABEL-HDL Reference Manual

by lower-lenel
schematics)

Figure 3-10. Typical CPLD Design

110

chapter 4 Source File Examples

The following examples are representative of programmable logic applications and
serve to illustrate significant ABEL-HDL features. You can use these examples to get
started creating your own source files. For complete information on creating a source
file, refer to Chapter 1, “Language Structure” and Chapter 5, “Language
Reference.”

All the examples in this section are installed with your software, and you can use
them without making any changes, or modify them in your designs.

The examples are divided into sections that demonstrate how to use the following
programmable logic applications:

s Equations

= State Diagrams

s Truth Tables

s Combined Logic Descriptions

= Hierarchy

s ABEL or ispDesignExpert Projects

ABEL-HDL Reference Manual 111

Equations

Equations

Memory Address Decoder

Address decoding is a typical application of programmable logic devices, and the
following describes the ABEL-HDL implementation of such a design.

Design Specification

Figure 4-1 shows the block diagram for this design and a continuous block of memory
divided into sections containing dynamic RAM (DRAM), I/0O (10), and two sections of
ROM (ROM1 and ROM2). The purpose of this decoder is to monitor the 6 high-order
bits (A15-A10) of a sixteen-bit address bus and select the correct section of memory
based on the value of these address bits. To perform this function, a simple decoder
with six inputs and four outputs is designed for implementation in a simple PLD.

15—
o— FiOMY
14—
o— AOMZ
813 ——
C— |
8412 —
C— DRaM
A1l ——
ATD —
RO AGk2 (L8] DR
o
FEFF Fang Fooo Eann (= 00

Figure 4-1. Block Diagram: Memory Address Decoder

The address ranges associated with each section of memory are shown below.
These address ranges can also be seen in the source file in Figure 4-3.

Memory Section Address Range (hex)
DRAM 0000-DFFF
1/0O EOOO-E7FF
ROM2 FOOO-F7FF
ROM1 F800-FFFF

ABEL-HDL Reference Manual 112

Equations

Design Method

Figure 4-2 shows a simplified block diagram for the address decoder. The decoder is
implemented with equations employing relational and logical operators as shown in
Figure 4-3.

Significant simplification is achieved by grouping the address bits into a set named
Address. The ten address bits that are not used for the address decode are given no-
connect values in the set, indicating that the address in the overall design (that
beyond the decoder) contains 16 bits, but that bits O to 9 do not affect the decode of
that address and are not monitored. In contrast, defining the set as

Address = [A15,A14,A13,A12,A11,A10]

ignores the existence of the lower-order bits. Specifying all 16 address lines as
members of the address set allows full 16-bit comparisons of the address value
against the ranges shown above.

ROM1

ROM2
Address |

11 1]

DRAM

Figure 4-2. Simplified Block Diagram: Memory Address Decoder

ABEL-HDL Reference Manual 113

Equations

module decode
title 'memory decode’

A15,A14,A13,A12,A11,A10 pin;
ROML1,10,ROM2,DRAM
HLX =1,0,X,;

Address = [A15,A14,A13,A12, A11,A10,X,X, X,X,X,X, X,X,X,X];

equations

IDRAM

test_vectors

(Address -> [ROM1,ROM2,10,DRAM])

Ah0000 ->[H, H, H, LJ;
A4000 ->[H, H, H, LJ;

pin istype ‘com’;

= (Address <= *hDFFF);
= (Address >= *hE000) & (Address <= "hE7FF);

IROM2 = (Address >= *hF000) & (Address <= *hF7FF);
IROM1 = (Address >="hF800);

AM8000 ->[H, H, H, LJ;
~hC000 ->[H, H, H, L],
~hEOOO ->[H, H, L, HJ;
AhE8OO ->[H, H, H, H]J;
AMFO00 ->[H, L, H, HJ;
AMF800 ->[L, H, H, HI;
end
Figure 4-3. Memory Address Decoder Source File
Test Vectors

In this design, the test vectors are a straightforward listing of the values that must
appear on the output lines for specific address values. The address values are

specified in hexadecimal notation.

12-to-4 Multiplexer

The following describes the implementation of a 12-input to 4-output multiplexer using

high level equations.

ABEL-HDL Reference Manual

114

Equations

Design Specification

Figure 4-4 shows the block diagram for this design. The multiplexer selects one of the
four inputs and routes that set to the output. The inputs are a0-a3, b0-b3, and c0-c3.
The outputs are y0-y3. The routing of inputs to outputs is straightforward: a0 or b0 or
c0 is routed to the output y0, al or bl or cl is routed to the output y1, and so on with
the remaining outputs. The select lines, sO and s1, control the decoding that

determines which set is routed to the output.

a0 —m
al —m
e
ad —.»

b ——
1 —m
b2 —m
b3 —m

ol ——w
el —m
B
od ——

— i
— 1
— 2

Figure 4-4. Block Diagram: 12-to-4 Multiplexer

ABEL-HDL Reference Manual

115

Equations

Design Method

Figure 4-5 shows a block diagram for the same multiplexer after sets have been used
to group the signals. All of the inputs have been grouped into the sets a, b, and c. The
outputs and select lines are grouped into the sets, y and select, respectively. This
grouping of signals into sets takes place in the declaration section of the source file
listed in Figure 4-6.

When the sets have been declared, specification of the design is made with the
following four equations that use WHEN-THEN statements.

when (select == 0) theny = a;
when (select == 1) theny = b;
when (select == 2) theny = c;
when (select == 3) theny =c;

The relational expression (==) inside the parentheses produces an expression that
evaluates to true or false value, depending on the values of sO and s1.

e

B — —

& —

!

select

Figure 4-5. Simplified Block Diagram: 12-to-4 Multiplexer

In the first equation, this expression is then ANDed with the set a which contains the
four bits, a0-a3, and could be written as

y =(select==0) & a

Assume select is equal to O (s1 = 0 and sO = 0), so a true value is produced. The true
is then ANDed with the set a on a bit by bit basis, which in effect sets the product term
to a. If select were not equal to O, the relational expression inside the parentheses
would produce a false value. This value, when ANDed with anything, would give all
zeroes.

ABEL-HDL Reference Manual 116

Equations

The other product terms in the equation work in the same manner. Because select
takes on only one value at a time, only one of the product terms pass the value of an

input set along to the output set. The others contribute O bits to the ORs.

Test Vectors

The test vectors for this design are specified in terms of the input, output, and select
sets. Note that the values for a set can be specified by decimal numbers and by other
sets. The constants H and L, used in the test vectors, were declared as four bit sets

containing all ones or all zeroes.

module Mux12T4
title '12 to 4 multiplexer'

a0..a3 pin 1.4

b0..b3 pin 5.8;

c0..c3 pin 9,11, 12, 13;
s1,s0 pin 18,19;
y0..y3 pin 14.17;

H = [1,1,1,1];
L = [0,0,0,0];
X = X
select = sl1, sO];
y = [y3.y0]
a = [a3..a0];
b = [b3..b0];
c = [c3..cO];
equations

when (select == 0) theny = a;
when (select == 1) theny = b;
when (select == 2) then y = c;
when (select == 3) then y = c;

test_vectors ([select, a, b, ¢c] ->y)

end

, 1, X, X] -> 1;"select = 0, gates lines a to output
,10, H, L] -> 10;

,5,H,L]->5;

, H, 3, H] -> 3;"select = 1, gates lines b to output
yH ->7;

, L] -> 15;

, 8] -> 8;"select = 2, gates lines ¢ to output
,H,9]->09;

L,

[

P N
- .. 0O
o~

IrrrTrTrr

L
1
%

Lo

0
0
0
1
1
1
2
2
2
3
3
3

Figure 4-6. Source File: 12-to-4 Multiplexer

ABEL-HDL Reference Manual

117

Equations

4-Bit Universal Counter

The following design describes the implementation of a 4-bit up/down counter with
parallel load and count enable. The design is described using high-level ABEL-HDL
equations. Figure 4-7 shows a block diagram of the counter and its signals.

Figure 4-8 shows the source file for this design.

. UNICNT

(o— d2

(— d1

(O— do B0
@— clk g2 —@
(O— rst al o
O— ©—O
G ud 125

Figure 4-7. Block Diagram: 4-bit Universal Counter

The outputs g3, g2, g1, and g0 contain the current count. The least significant bit
(LSB) is g0 the most significant bit (MSB) is 3.

Using Sets to Create Modes

The counter has four different modes of operation: Load Data From Inputs, Count Up,
Count Down, and Hold Count. You select the modes by applying various
combinations of values to the inputs cnten, Id, and u_d, as described below. The four
modes have different priorities, which are defined in the ABEL-HDL description.

The Load mode has the highest priority. If the Id input is high, then the g outputs
reflect the value on the d inputs after the next clock edge.

The Hold mode has the next highest priority. Provided Id is low, then when the cnten
input is low, the g outputs maintain their current values upon subsequent clock edges,
ignoring any other inputs.

The Up and Down modes have the same priority, and by definition are mutually

exclusive. Provided cnten is high and Id is low, then when u_d is high, the counter
counts up and when u_d is low, the counter counts down.

ABEL-HDL Reference Manual 118

Equations

Counter Reset
The counter is reset asynchronously by assertion of the input rst.

Using Range Operators

Because this design uses range operators and sets, you can modify the counter to be
any width by making changes in the declarations section. You could create a 9-bit
counter by changing the lines which read “d3..d0” and “g3..q0” to “d8..d0” and
“08..q0," respectively. The range expressions are expanded out and create register
sets of corresponding width.

Design Description
Hierarchical Interface Declaration

Directly after the module name, the design contains a hierarchical interface
declaration which is used by the ABEL-HDL compiler and linker if another ABEL-HDL
source instantiates this source. The interface list shows all of the input, output, and
bidirectional signals (if any) in the design.

Declarations

The declarations contain sections that make the design easier to interpret. The
sections are as follows:

Constants Constant values are defined.
Inputs Design inputs are declared.
Outputs The output pin list contains an Istype declaration for

retargetability.

Sets The names data and count are defined as sets (groups)
containing the inputs d3, d2, d1, and d0, and the outputs g3,
g2, g1, and g0, respectively.

Modes The “Mode equations” are actually more constant
declarations. First MODE is defined as the set containing
cnten, Id, and u_d, in that order. Next, LOAD is defined as
being true when the members of MODE are equal to X, 1, and
X, respectively. HOLD, UP, and DOWN are defined similarly.

ABEL-HDL Reference Manual 119

Equations

Equations

The design of the counter equations enables you to easily define modes and your
actual register equations will be easily readable. The counter equation uses
WHEN-THEN-ELSE syntax. The first line

when LOAD then count ;= data

uses the symbolic name LOAD, defined earlier in the source file as
LOAD = (MODE == [X, 1, X])

and MODE itself is a set of inputs in a particular order, defined previously as
MODE = [cnten, Id, u_d]

The first line of the equation could have been written as follows
when ((cnten == X) & (Id == 1) & (u_d == X)) then count := data

which is functionally the same, but the intermediate definitions used instead makes
the source file more readable and easier to modify.

ABEL-HDL Reference Manual 120

Equations

module unicnt
interface (d3..dO, clk,rst,Id, u_d -> g3..q0) ;

title '4 bit universal counter with parallel load' ;

"constants
X,C,z= X, .C, .Z;
"inputs
d3..d0 pin; "Data inputs, 4 bits wide
clk pin; "Clock input
rst pin; "Asynchronous reset
cnten pin; "Count enable
ld pin; "Load counter with input data value
ud pin; "Up/Down selector: HIGH selects up
"outputs
g3..q0 pinistype 'reg’; "Counter outputs
"sets
data = [d3..dO]; "Data set
count = [g3..q0]; "Counter set

"mode equations
MODE = [cnten,ld,u_d]; "Mode set composed of control pins.
LOAD = (MODE ==[X , 1, X]);"Various modes are defined by
HOLD = (MODE ==[0 , 0, X]);"values applied to control pins.
UP =(MODE==[1,0, 1]);"Symbolic name may be defined as
DOWN = (MODE ==[1 , 0, 0]);"a set equated to a value.

equations
when LOAD then count := data "Load counter with data
else when UP then count:=count+1 "Count up
else when DOWN then count := count-1 "Count down

else when HOLD then count := count; "Hold count
count.clk = clk; "Counter clock input
count.ar =rst; "Counter reset input
"test_vectors edited...
end

Figure 4-8. Source File: 4-bit Universal Counter

|:| NOTE You can also see the advantages of set notation in the test
vector section (which has been edited in this manual, but can
be seen in the actual .abl file). In the test vectors, the input
data is applied as a decimal value, and the output count is a
decimal value rather than a set of binary bits.

ABEL-HDL Reference Manual 121

Equations

Bidirectional 3-state Buffer

A four-bit bidirectional buffer with tri-state outputs is presented here. Simple Boolean
equations are used to describe the function.

Design Specification

Figure 4-9 shows a block diagram for this four-bit buffer. Signals A0-A3 and B0O-B3
function both as inputs and outputs, depending on the value on the select lines, SO-
S1. When the select value (the value on the select lines) is 1, AO-A3 are enabled as
outputs. When the select value is 2, BO-B3 are enabled as outputs. (The choice of 1
and 2 for select values is arbitrary.) For any other values of the select lines, both the
A and B outputs are at high impedance. Output polarity for this design is positive.

Figure 4-9. Block Diagram: Bidirectional 3-state Buffer

ABEL-HDL Reference Manual 122

Equations

Design Method

A simplified block diagram for the buffer is shown in Figure 4-10. The A and B
inputs/outputs are grouped into two sets, A and B. The select lines are grouped into
the select set. Figure 4-11 shows the source file that describes the design.

Selact

|

o
= d—-

Figure 4-10. Simplified Block Diagram: Bidirectional 3-state Buffer

High-impedance and don't-care values are declared to simplify notation in the source
file. The equations section describes the full function of the design. What appear to
be unresolvable equations are written for A and B, with both sets appearing as inputs
and outputs. The enable equations, however, enable only one set at a time as
outputs; the other set functions as inputs to the buffer.

Test vectors are written to test the buffer when either set is selected as the output set,

and for the case when neither is selected. The test vectors are written in terms of the
previously declared sets so the element values do not need to be listed separately.

ABEL-HDL Reference Manual 123

Equations

module tsbuffer

title 'bidirectional 3-state buffer'
S1,S0 Pin 1,2; Select = [S1,S0];
A3,A2,A1,A0 Pin12,13,14,15; A =[A3,A2,A1,A0Q];
B3,82,B1,B0 Pin 16,17,18,19; B =[B3,B2,B1,B0];

X,Z =.X.,.Z;
equations

A=B;

B=A;

A.oe = (Select == 1);

B.oe = (Select == 2);
test_vectors

([Select, A, B]->[A, B)])

[0 ,0 0->[2 Z;

[0 ,15 15> z, Z];

[1 , X, 5->[5, X
[1 , X, 10]->[10, X];

, 5, X]->[X, 5];
, 10, X]->[X, 10];
, 0, 0->[2, Z];
, 15, 15]-> [Z, Z];
end

Figure 4-11. Source file: Bidirectional 3-state Buffer

ABEL-HDL Reference Manual

124

Equations

4-Bit Comparator

This is a design for a 4-bit comparator that provides an output for “equal to,” “less
than,” “not equal to,” and “greater than” (as well as intermediate outputs). The design

is implemented with high level equations.

Design Specification

The comparator, as shown in Figure 4-12, compares the values of two four-bit inputs
(AO-A3 and B0-B3) and determines whether A is equal to, not equal to, less than, or
greater than B. The result of the comparison is shown on the output lines, EQ, GT,

NE, and LT.

A0 —
Al —m
A7 —
AL —

B —
Bl —m
B2 —m
B3 —m

— EL]
—* GT

—* NE

L T

Figure 4-12. Block Diagram: 4-bit Comparator

Design Method

Figure 4-13 and Figure 4-14 show the simplified block diagram and source file listing
for the comparator. The inputs A0-A3 and BO-B3 are grouped into the sets A and B.
YES and NO are defined as 1 and 0, to be used in the test vectors.

The equations section of the source file contains the following equations:

EQ =A==B;
NE = I(A == B):
GT =A>B;

LT =1((A>B)# (A ==B));

ABEL-HDL Reference Manual 125

Equations

[p—
- F
o GT
[E— L ME
— LT

Figure 4-13. Simplified Block Diagram: 4-bit Comparator

You could also use the following equations for the design of this comparator.
However, many more product terms are used:

EQ =A==B;
NE = A I=B;
GT =A>B;
LT =A<B;

The first set of equations takes advantage of product term sharing, while the latter set
requires a different set of product terms for each equation. For example, the equation

NE =!(A ==B);

uses the same 16 product terms as the equation

EQ =A==B;

thereby reducing the number of product terms. In a similar manner, the equation

LT =!((A>B)# (A==B));

uses the same product terms as equations

EQ =A==B;

GT =A>B;

whereas the equation

LT =A<B;

(in the second set of equations) requires the use of additional product terms. Sharing

product terms in devices that allow this type of design architecture can serve to fit
designs into smaller and less expensive logic devices.

ABEL-HDL Reference Manual 126

Equations

module comp4a
title '4-bit look-ahead comparator'

A3..A0 pin 1..4;

A = [A3..A0];
B3..BO pin 5..8;
B = [B3..BO];

NE,EQ,GT,LT pin 16..19 istype 'com’;
No,Yes =0,1;
equations
EQ = A== :
NE =!(A==B);
GT = A>B;
LT =Y(A>B)# (A==B)),
" test_vectors deleted...

end

Figure 4-14. Source File: 4-bit Comparator

Test Vectors

Three separate test vectors sections are written to test three of the four possible
conditions. (The fourth and untested condition of NOT EQUAL TO is simply the
inverse of EQUAL TO.) Each test vectors table includes a test vector message that
helps make report output from the compiler and the simulators easier to read.

The three tested conditions are not mutually exclusive, so one or more of them can
be met by a given A and B. In the test vectors table, the constants YES and NO
(rather than 1 and 0) are used for ease of reading. YES and NO are declared in the
declaration section of the source file.

ABEL-HDL Reference Manual 127

Truth Table Examples

Truth Table Examples

Seven-segment Display Decoder

This display decoder decodes a four-bit binary number to display the decimal
equivalent on a seven-segment LED display. The design incorporates a truth table.

Design Specification

Figure 4-15 shows a block diagram for the design of a seven-segment display
decoder and a drawing of the display with each of the seven segments labeled to
correspond to the decoder outputs. To light a segment, the corresponding line must
be driven low. Four input lines DO-D3 are decoded to drive the correct output lines.
The outputs are named a, b, c, d, e, f, and g corresponding to the display segments.
All outputs are active low. An enable, ena, is provided. When ena is low, the decoder
is enabled; when ena is high, all outputs are driven to high impedance.

eng

C—

—w b
00—

— —=
01— r| . |n

— i —
02 — e| c

p—we a
03—

C—- |

[—= 1

Figure 4-15. Block Diagram: Seven-segment Display Decoder

Design Method

Figure 4-16 and Figure 4-17 show the simplified block diagram and the source file for
the ABEL-HDL implementation of the display decoder. The binary inputs and the
decoded outputs are grouped into the sets bcd and led. The constants ON and OFF
are declared so the design can be described in terms of turning a segment on or off.
To turn a segment on, the appropriate line must be driven low, thus we declare ON as
0 and OFF as 1.

ABEL-HDL Reference Manual 128

Truth Table Examples

enad

bod —m C— |ed

Figure 4-16. Simplified Block Diagram: Seven-segment Display Decoder

The design is described in two sections, an equations section and a truth table
section. The decoding function is described with a truth table that specifies the
outputs required for each combination of inputs. The truth table header names the
inputs and outputs. In this example, the inputs are contained in the set named bcd
and the outputs are in led. The body of the truth table defines the input to output
function.

Because the design decodes a number to a seven segment display, values for bcd
are expressed as decimal numbers, and values for led are expressed with the
constants ON and OFF that were defined in the declarations section of the source
file. This makes the truth table easy to read and understand; the incoming value is a
number and the outputs are on and off signals to the LED.

The input and output values could have just as easily been described in another form.
Take for example the line in the truth table:

5->[ON, OFF, ON, ON, OFF, ON, ON]

This could have been written in the equivalent form:
[0,1,0,1]->36

In this second form, 5 was simply expressed as a set containing binary values, and
the LED set was converted to decimal. (Remember that ON was defined as 0 and
OFF was defined as 1.) Either form is supported, but the first is more appropriate for
this design. The first form can be read as, “the number five turns on the first segment,
turns off the second, . . .” whereas the second form cannot be so easily translated
into meaningful terms.

ABEL-HDL Reference Manual 129

Truth Table Examples

module bcd7
title 'seven segment display decoder'
" a
BCD-to-seven-segment decoder similar to the 7449
flglb
segment identification
e|ld|c

D3,02,D1,D0,Ena pin 2,3,4,5,6;
a,b,c,d,ef,g pin13,14,15,16,17,18,19 istype 'com’;

bcd =[D3,D2,D1,D0];
led =[a,b,c,de/fq];
ON,OFF =0,1; " for common anode LEDs
LHX,Z=0,1,X.,.Z.;
equations
led.oe = |Ena;
@dcset

truth_table (bcd->[a, b, c, d, e, f, g])
->[ON, ON, ON, ON, ON, ON, OFFJ;
->[OFF, ON, ON, OFF, OFF, OFF, OFF];
-> [ON, ON, OFF, ON, ON, OFF, ONJ;
-> [ON, ON, ON, ON, OFF, OFF, ONJ;
-> [OFF, ON, ON, OFF, OFF, ON, ON];
->[ON, OFF, ON, ON, OFF, ON, ONJ;
->[ON, OFF, ON, ON, ON, ON, ONJ;
->[ON, ON, ON, OFF, OFF, OFF, OFF];
->[ON, ON, ON, ON, ON, ON, ONJ;
-> [ON, ON, ON, ON, OFF, ON, ONJ;
" test_vectors edited

end

O©CoOoO~NOOUIhWNELO

Figure 4-17. Source File: 4-bit Counter with 2-input Mux

Test Vectors

The test vectors for this design test the decoder outputs for the ten valid combinations
of input bits. The enable is also tested by setting ena high for the different
combinations. All outputs should be at high impedance whenever ena is high.

ABEL-HDL Reference Manual 130

State Diagram Examples

State Diagram Examples

3-state Sequencer

The following design is a simple sequencer that demonstrates the use of ABEL-HDL
state diagrams. The number of State Diagram states that can be processed depends
on the number of transitions and the path of the transitions. For example, a 64-state
counter uses fewer terms (and smaller equations) than a 63-state counter. For large
counter designs, use the syntax CountA:= CountA + 1 to create a counter rather than
using a state machine. See also example COUNT116.abl for further information on
counter implementation.

Design Specification

Figure 4-18 shows the sequencer design with a state diagram that shows the
transitions and desired outputs. The state machine starts in state A and remains in
that state until the 'start’ input becomes high. It then sequences from state A to state
B, from state B to state C, and back to state A. It remains in state A until the 'start'
input is high again. If the 'reset’ input is high, the state machine returns to state A at
the next clock cycle. If this reset to state A occurs during state B, a 'halt' synchronous
output goes high, and remains high until the machine is again started.

During states B and C, asynchronous outputs 'in_B' and 'in_C' go high to indicate the
current state. Activation of the 'hold’ input will cause the machine to hold in state B or
C until 'hold" is no longer high, or 'reset’' goes high.

Design Method

The sequencer is described by using a STATE_DIAGRAM section in the source file.
Figure 4-19 shows the source file for the sequencer. In the source file, the design is
given a title, the device type is specified, and pin declarations are made. Constants
are declared to simplify the state diagram notation. The two state registers are
grouped into a set called 'sreg' and the three states (A, B, and C) are declared, with
appropriate values specified for each.

The state values chosen for this design allow the use of register preload to ensure
that the machine starts in state A. For larger state machines with more state bits,
careful numbering of states can dramatically reduce the logic required to implement
the design. Using constant declarations to specify state values saves time when you
make changes to these values.

The state diagram begins with the STATE_DIAGRAM statement that names the set of
signals to use for the state register. In this example, 'sreg' is the set of signals to use.

ABEL-HDL Reference Manual 131

State Diagram Examples

default with halt =0

hold &lreset
with halt =10

resetmith hatt = 1

with halft =0 default with hatt =0

start & Ireset

with hatt =0 hald & lrasat

with hatt =0

Figure 4-18. State Diagram: 3-state Sequencer

Within the STATE_DIAGRAM, IF-THEN-ELSE statements are used to indicate the
transitions between states and the input conditions that cause each transition. In
addition, equations are written in each state that indicate the required outputs for
each state or transition.

For example, state A reads:

State A:

in=0;

in_C=0;

if (start & !reset) then B with
halt := 0;

else A with halt := halt;

This means that if the machine is in state A, and start is high but reset is low, it
advances to state B. In any other input condition, it remains in state A.

The equations for in_B and in_C indicate those outputs should remain low while the
machine is in state A. The equations for halt, specified with the with keyword,
indicate that halt should go low if the machine transitions to state B, but should
remain at its previous value if the machine stays in state A.

ABEL-HDL Reference Manual 132

State Diagram Examples

Test Vectors

The specification of the test vectors for this design is similar to other synchronous
designs. The first vector is a preload vector, to put the machine into a known state
(state A), and the following vectors exercise the functions of the machine. The A, B,
and C constants are used in the vectors to indicate the value of the current state,

improving the readability of the vectors.

module sequence
title 'State machine example’;

gl,q0 pin 14,15 istype 'reg,invert’;
clock,enab,start,hold,reset pin 1,11.4,2 3;
halt pin 17;
in_B,in_C pin 12,13;
sreg = [91,q0];
"State Values...
A=0; B=1, C=2
equations

[91,90,halt].clk = clock;
[q1,q0,halt].oe = !enab;

state_diagram sreg;

State A: " Hold in state A until start is active.
in_B =0;
in_C=0;

IF (start & !reset) THEN B WITH halt := 0;
ELSE A WITH halt := halt.fb;

State B: " Advance to state C unless reset is active
in B=1; " or hold is active. Turn on halt indicator
in C=0; " if reset.

IF (reset) THEN A WITH halt := 1,
ELSE IF (hold) THEN B WITH halt := 0;
ELSE C WITH halt := 0;

State C: " Go back to A unless hold is active
in B=0; " Reset overrides hold.
in C=1,;

IF (hold & !reset) THEN C WITH halt := 0;
ELSE A WITH halt := 0;

" test_vectors edited...

end

Figure 4-19. Source File: 3-state Sequencer

ABEL-HDL Reference Manual

133

Combined Logic Descriptions

Combined Logic Descriptions

This section contains an advanced logic design and builds on examples and concepts
presented in the earlier sections of this manual. This design, a blackjack machine, is
the combination of more than one basic logic design. Design specification, methods,
and complete source files are given for all parts of the blackjack machine example,
which contains the following logic designs:

= Multiplexer

= 5-bit adder

= Binary to BCD converter
= State machine

This example is a classic blackjack machine based on C.R. Clare's design in
Designing Logic Systems Using State Machines (McGraw Hill, 1972). The blackjack
machine plays the dealer's hand, using typical dealer strategies to decide, after each
round of play, whether to draw another card or to stand.

The blackjack machine consists of these functions: a card reader that reads each
card as it is drawn, control logic that tells it how to play each hand (based on the total
point value of the cards currently held), and display logic that displays scores and
status on the machine's four LEDs. For this example, we are assuming that the two
digital display devices used to display the score have built-in seven-segment
decoders.

To operate the machine, insert the dealer's card into the card reader. The machine
reads the value and, in the case of later card draws, adds it to the values of previously
read cards for that hand. (Face cards are valued at 10 points, non-face cards are
worth their face value, and aces are counted as either 1 or 11, whichever count yields
the best hand.) If the point total is 16 or less, the GT16 line will be asserted (active
low) and the Hit LED will light up. This indicates that the dealer should draw another
card. If the point total is greater than 16 but less than 22, no LEDs will light up
(indicating that the dealer should draw no new cards). If the point total is 22 or higher,
LT22 will be asserted (active low) and the Bust LED will light (indicating that the
dealer has lost the hand).

The blackjack machine is implemented in three subdesigns:
1. A multiplexer-adder-comparator, which adds the value of the newly drawn card to
the existing hand (and indicates an ace to the state machine);

2. A binary to binary-coded-decimal (BCD) converter, which takes in the five-bit
binary score and converts it to two-digits of BCD for the digital display.

3. The blackjack controller (a state machine that contains the game logic). This logic
includes instructions that determine when to add a card value, when to count an
ace as 1, and when to count an ace as 11.

ABEL-HDL Reference Manual 134

Combined Logic Descriptions

Circuits that are a straightforward function of a set of inputs and outputs are often
most easily expressed in equations; the adder is such a circuit. The subdesign
MUXADD for the adder function includes three elements: a multiplexer, the adder
itself, and a comparator.

The multiplexer selects either the value of the newly dealt card or one of the two fixed
values used for the ace (ADD10 or SUB10). The adder adds the value selected by
the multiplexer to the previous score when triggered by the clock signal, ADDCLK.
The comparator detects when an ace is present and passes this information on to the
blackjack controller, BJACK.

Outputs that do not follow a specific pattern are most easily expressed as truth tables.
This is the case with the binary-to-BCD converter that is identified in the schematic as
BINBCD. This subdesign converts five bits of binary input to BCD output for two
digital display elements.

The following text describes the internal logic design necessary to keep the card
count, to control the play sequence, and to show the count on the digital display (or
the state on the Hit and Bust LEDs). Neither the card reader nor the physical design
is discussed here. Assume that the card reader provides a binary value that is
representative of the card read.

The design has eight inputs (four of which are the binary encoded card values, VO-
V3). The remaining four inputs are signals that indicate the following:

= Restart (the machine is to be restarted)

s CardIn (a card is in the reader)

s CardOut (no card is in the reader)

m CLK (a clock signal to synchronize the design to the card reader)

CardIn, CardOut, and CIk are provided by the card reader. Restart is provided by a
switch on the exterior of the machine.

Module Function in the Blackjack Machine
MUXADD Multiplexer/Adder/Comparator
BINBCD Binary-BCD converter

BJACK State machine

ABEL-HDL Reference Manual 135

Combined Logic Descriptions

Design Specification — MUXADD

MUXADD consists of an input multiplexer, an adder, and a comparator. The
multiplexer determines what value is added to the current score (by the adder). The
added value consists of the contents of the external card reader (VO-V1 declared as
Card), a numeric value of +10, or a numeric value of -10.

The inputs Add10 and Subl10 from the controller (state machine) BJACK determine
which of the three values the multiplexer selects for application to the adder. Card is
applied to the adder when Add10 and Subl0 are active high, as generated by the
BJACK controller. When Add10 becomes active low, 10 is added to the current score
(to count an ace as 11 instead of 1), and when Sub10 is active low, -10 is added to
the current score (to count an ace as 1 instead of 11).

The adder provides an output named Score (S0-S4) which is the sum of the current
adder contents and the value selected by the input multiplexer (the card reader
contents, +10, or -10). The comparator monitors the contents of the external card
reader (Card) and generates an output, is_Ace, to the BJACK controller that signifies
that an ace is present in the card reader.

Design Method — MUXADD

MUXADD consists of a three-input multiplexer, a five-bit ripple adder, and a five-bit
comparator. These circuit elements are defined in the equations shown in

Figure 4-20. For the multiplexer inputs, a set named Card defines inputs VO through
V4 as the value of the card reader, while inputs Add10 and Sub10 are used directly in
the following equations to define the multiplexer. The multiplexer output to the adder
is named Data and is defined by the equations

Data = Add10 & Subl0 & Card
#1Add10 & Subl0 & ten
Add10 & !'Subl10 & minus_ten;

The adder (MUXADD) is a five-bit binary ripple adder that adds the current input from
the multiplexer to the current score, with carry. The adder is clocked by a signal
(AddCIk) from the BJACK controller and is described with the following equations:

Score :=Data $ Score.FB $ Carryin;
CarryOut = Data & Score.FB # (Data # Score.FB) & Carryln;
Reset =IClIr;

In the above equations, Score is the sum of Data (the card reader output, value of
ten, or value of minus ten), Score (the current or last calculated score), and Carryin
(the shifted value of CarryOut, described below). The new value of Score appears at
the SO through S4 outputs of MUXADD at the time of the AddCIk pulse generated by
the BJACK controller (state machine).

ABEL-HDL Reference Manual 136

Combined Logic Descriptions

Before the occurrence of the AddCIk clock pulse, an intermediate adder output
appears at combinatorial outputs, labeled CO through C4 and defined as the set
named CarryOut (shown below). A second set named Carryln defines the same
combinatorial outputs as CarryOut, but the outputs are shifted one bit to the left, as
shown below.

Carryln =[C4..C1, O];
CarryOut =[X,C4..C1];

The set declarations define Carryln as CarryOut with the required shift to the left for
application back to adder input. At the time of the AddClk pulse from the BJACK
controller, Carryln is added to Score and Data by an exclusive-or operation.

The comparator portion of MUXADD is defined with
is_Ace = Card == 1;

which provides an input to the BJACK controller whenever the value provided by the
card reader is 1.

Test Vectors — MUXADD

The test vectors shown in Figure 4-20 verify operation of MUXADD by first clearing
the adder (so Score is zero), then adding card reader values 7 and 10. The test
vectors then input an ace (1) from the card reader (Card) to produce a Score of 1 and
pull the is_Ace output high. Subsequent vectors verify the -10 function of the input
multiplexer and adder. The trace statement lets you observe the carry signals in
simulation.

ABEL-HDL Reference Manual 137

Combined Logic Descriptions

module MuxAdd
title '5-bit ripple adder with input multiplex’

AddCIk,CIr,Add10,Sub10,is_Ace pin 1,9,8,7,14;

V4.0 pin;
S4..50 pin;
C4.C1 pin;

XCLH =.X,.C,0,1,

Card =[V4.V0];
Score =[S4..S0];

Carryln =[CA4..C1, O];
CarryOut =[X,C4..C1];
ten =[0,1,0,1,0]

minus_ten=[1,0, 1, 1, 0];
S4..S0 istype 'reg’ ;
" Input Multiplexer
Data = Add10 & Subl0 & Card
#1Add10 & Subl0 & ten
Add10 & !'Subl10 & minus_ten;

equations
Score :=Data $ Score.FB $ Carryin;
CarryOut = Data & Score.FB # (Data # Score.FB) & Carryln;
Score.ar = !(Clr # Clr);
Score.clk = AddCIk;
is_Ace =Card==1;
" test_vectors edited...
end MuxAdd

Figure 4-20. Source File: Multiplexer/Adder/Comparator

ABEL-HDL Reference Manual 138

Combined Logic Descriptions

Design Specification — BINBCD

To display the Score, appearing at the output of MUXADD, a binary to bcd converter
is implemented. It is the function of the converter to accept the four lines of binary
data generated by MUXADD and provide two sets of binary coded decimal outputs
for two bcd display devices; one to display the units of the current score, and the other
to display the tens. The four-bit output bcd1 (D0O-D3) contains the units of the current
score, and is connected to the high-order display digit. The two-bit output bcd2 (D4
and D5) contains the tens, and is fed to the low-order display digit.

BINBCD also provides a pair of outputs to light the Bust and Hit LEDs. Bust is lit
whenever Score is 22 or greater; while Hit is lit whenever Score is 16 or less.

Design Method — BINBCD

The design of BINBCD is shown in the source file of Figure 4-21. The design of the
converter is easily expressed with a truth table that lists the value of Score (inputs SO
through S4 are declared as Score) for values of bcdl and bcd2. bcd1 and bcd2 are
sets that define the outputs that are fed to the two digital display devices. The truth
table lists Score values up to decimal 31.

The truth table represents a method of expressing the design “manually.” You could
use a macro to create a truth table in the following manner:

clear(binary);
@repeat 32 { binary - [binary/10,binary%10]; inc(binary);}

As indicated in Figure 4-21 (and described in “Test Vectors — BINBCD”), this macro
is used to generate the test vectors for the converter. The generated *.Ist file shows
the truth table created from the macro.

The BINBCD design also provides the outputs LT22 and GT16 to control the Bust and
Hit LEDs. A pair of equations generate an active-high LT22 signal to turn off the Bust
LED when Score is less than 22, and an active-high GT16 signal to turn off the Hit
LED when Score is greater than 16.

Test Vectors — BINBCD

The test vectors shown in Figure 4-21 verify operation of the LT22 and GT16 outputs
of the converter by assigning various values for Score and checking for the
corresponding outputs.

The test vectors for the binary to bcd converter are defined by means of the following
macro:

test_vectors (score - [bcd2,bcd1])
clear(binary);
@repeat 32 { binary - [binary/10,binary%210]; inc(binary);}

ABEL-HDL Reference Manual 139

Combined Logic Descriptions

This macro generates a test vector with the variable binary set to 0 by the macro (a)
{@const ?a=0}; (in the binbcd.abl source file shown in Figure 4-21), followed by 31
vectors provided by the @repeat directive. The 31 vectors are generated by
incrementing the value of the variable binary by a factor of 1 for each vector. Refer to
the inc macro (a) {@const ?a=?a+1;}; line in Figure 4-22. On the output side of the
test vectors, division is used to create the output for bcd2 (tens display digit), while
the remainder (modulus) operator is used to create the output for bcdl (units display

digit).

module BINBCD
title ‘comparator and binary to bcd decoder for Blackjack Machine'

" The 5 -bit binary (0 - 31) score is converted into two BCD outputs.
" The integer division '/* and the modulus operator '%' are used to

" extract the individual digits from the two digit score.

"'Score % 10" will yield the 'units’ and

"'Score / 10" will yield the 'tens'

"The 'GT16' and 'LT22' outputs are for the state machine controller.

S4..S0 pin;

score =[S4..50];
LT22,GT16 pin istype '‘com’;
D5,D4 pinistype ‘com’

bcd2 =[D5,D4];
D3..D0 pinistype ‘com’;
bcdl =[D3..D0];
" Digit separation macros
binary =0; "scratch variable

clear macro (a) {@const ?a=0};
inc macro (a) {@const ?a=?a+1;};

equations
LT22 =(score < 22); "Bust
GT16 = (score > 16); "Hit / Stand

" test_vectors edited...
truth_table (score -> [bcd2,bcd1])
>[0,0];
>[0, 1]
->[O! 2]1
>[0, 3];
=>[0, 4]
>[0,5];
>[0, 6];
>[0, 7]
->[O! 8]1
>[0, 9]

©Coo~NOYUTh,WNELO

Figure 4-21. Source File: 4-bit Counter with 2-input Mux

ABEL-HDL Reference Manual

140

Combined Logic Descriptions

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 > , 17

" This truth table could be replaced with the following macro.

clear(binary);
@repeat 32 {

binary -> [binary/10,binary%10]; inc(binary);}

1 1 1 1 1 1 1 1 1
wWN O

VVVVVVVVVV\IIVVVVVVVVVV

— e e e L e — e — —

WWNNNMNNNNNNMNNNRRRPRRRPRRPRREPRRPR

" The test vectors will demonstrate the use of the macro.
test_vectors (score -> [bcd2,bcdl])
clear(binary);
@repeat 32 {
binary -> [binary/10,binary%10]; inc(binary);}

end

Figure 4-21. Source File: 4-bit Counter with 2-input Mux (Continued)

ABEL-HDL Reference Manual 141

Combined Logic Descriptions

Design Specification — BJACK

BJACK, the blackjack controller, is technically a state machine (a circuit capable of
storing an internal state reflecting prior events). State machines use sequential logic,
branching to new states and generating outputs on the basis of both the stored states
and external inputs.

In the case of the controller, the state machine stores states that reflect the following
blackjack machine conditions:

= The value of Score in one of the decimal value ranges (0 to 16, 17 to 21, or 22+).
m The status of the card reader (card in or card out).
= The presence of an ace in the card reader.

On the basis of these stored states (and input from each new card), the controller
decides whether or not a +10 or -10 value is sent to the adder.

Design Method — BJACK

Developing a bubble diagram is the first step in describing a state machine.

Figure 4-22 shows a bubble diagram (pictorial state diagram) for the controller. This
bubble diagram indicates state transitions and the conditions that cause those
transitions. Transitions are represented by arrows and the conditions causing the
transitions are written alongside the arrow.

You must express the bubble diagram in the form shown in the state_diagram in
Figure 4-23. There is a one-to-one correlation between the bubble diagram and the
state diagram described in the source file (Figure 4-23). The table below describes
the state identifiers (state machine states) illustrated in the bubble diagram and listed
in the source file.

ABEL-HDL Reference Manual 142

Combined Logic Descriptions

State
Identifier

Clear
ShowHit
AddCard
Add10

Wit

Testl7
Test22
Subl10

ShowBust

ShowStand

ABEL-HDL Reference Manual

Description

Clear the state machine, adder, and displays.

Indicate that another card is needed. Hit indicator is lit.
Add the value at the adder input to the current count.

Add the fixed value 10 to the current count, effectively
giving an ace a value of 11.

Wait until a card is taken out of the reader.
Test the current count for a value less than 17.
Test the current count for a value less than 22.

Add the fixed value -10 to the current count, effectively
subtracting 10 and restoring an ace to 1.

Indicate that no more cards are needed. Bust indicator
is lit.

Indicate that no more cards are needed. Neither Hit nor
Bust indicators are lit.

143

Combined Logic Descriptions

Festart = Low
Or Power Up

Restart = Low

Restart = High

CardIn = High

Cardin = Low

izhce & LAce

Add1o

Iisfoe & LAz

CardOut = High

CardCiust = Low

ILT22 & Poe

ILT22 & LAge

Figure 4-22. Pictorial State Diagram: Blackjack Machine

ABEL-HDL Reference Manual 144

Combined Logic Descriptions

Note that in Figure 4-23, each of the state identifiers (for example, ShowHit) is
defined as sets having binary values. These values were chosen to minimize the
number of product terms.

Operation of the state machine proceeds as follows if no aces are drawn:

» If a card is needed from the reader, the state machine goes to state ShowHit.

= When CardIn goes low, meaning that a card has been read, a transition to state
AddCard is made. The card value is added to the current score.

= The machine goes to Wait state until the card is withdrawn from the reader.
= The machine goes to Test17 state.

m If the score is less than 17, another card is drawn.

m If the score is greater than or equal to 17, the machine goes to state Test22.
n If the score is less than 22, the machine goes to the ShowStand state.

n If the score is 22 or greater, a transition is made to the ShowBust state.

= In either ShowStand or ShowBust state, a transition is made to Clear (to clear the
state register and adder) when Restart goes low.

= When Restart goes back to high, the state machine returns to ShowHit and the
cycle begins again.

Operation of the state machine when an ace is drawn is essentially the same. A card
is drawn and the score is added. If the card is an ace and no ace has been drawn
previously, the state machine goes to state Add10, and ten is added to the count (in
effect making the ace an 11). Transitions to and from Test17 and Test22 proceed as
before. However, if the score exceeds 21 and an ace has been set to 11, the state
machine goes to state Sub10, 10 is subtracted from the score, and the state machine
goes to state Test17.

Test Vectors — BJACK

Figure 4-23 shows three sets of test vectors; each set represents a different “hand” of
play (as described above the set of vectors) and tests the different functions of the
design. The Restart function is used to set the design to a known state between each
hand, and the state identifiers are used instead of the binary values (which they
represent).

ABEL-HDL Reference Manual 145

Combined Logic Descriptions

module bjack
title 'BlackJack state machine controller'

"Inputs
Clk,CIkIN pin; "System clock
GT16,LT22 pin; "Score less than 17 and 22

is_Ace pin; "Card is ace
Restart pin; "Restart game
CardIn,CardOut pin; "Card present switches
Ena pin;
Sensor = [CardIn,CardOut];
_In =[O0, 1]
InOut =[1, 11
Out =[1, 0]
"Outputs
AddClk pin istype '‘com’; "Adder clock
Add10 pin istype 'reg_D,invert’; "Input Mux control
Subl0 pin istype 'reg_D,invert’; "Input Mux control
Q2,Q1,Q0 pin istype 'reg_D,invert’;
Ace pin istype 'reg_D,invert’; "Ace Memory
High,Low =1,0;
H,L,C,X =1,0,.C.,.X.; "test vector characters
Qstate [Add10,Sub10,Q2,Q1,Q0];

Clear [1,1,1,1,1];"31
ShowHit =[1,1,1,1,0];"30
AddCard =[1,1,00,0];"24
Add_10 =[0,1,0,0,0];"16
Wt =[1,1,0,0,1];"25
Test_17 =[1,1,01,0]"26
Test_22 =[1,1,01,1];"27
ShowStand =[1,1,1,0,0]"28
ShowBust =[1,1,1,0,1];"29
Sub_10 =[1,0,0,0,1];"17
Zero =[0,0,0,0,0];"0
equations

[Qstate,Ace].c = CIk;
[Qstate,Ace].oe = I[Ena;
@dcset
state_diagram Qstate
State Clear: AddClk =ICIKIN;
Ace = Low;
if (Restart==Low) then Clear else ShowHit;
State ShowHit: AddClk = Low;
Ace = Ace;
if (Cardin==Low) then AddCard else ShowHit;

Figure 4-23. Source File: State Machine (Controller)

ABEL-HDL Reference Manual

146

Combined Logic Descriptions

State AddCard: AddClk =!CIKIN;
Ace = Ace;
if (is_Ace & !'Ace) then Add_10 else Wt;

State Add_10: AddClk = !CIKIN;

Ace := High;
goto Wit;

State Wi: AddClk = Low;
Ace = Ace;

if (CardOut==Low) then Test_17 else WHt;

State Test_17: AddCIk = Low;
Ace = Ace;
if I\GT16 then ShowHit else Test_22;
State Test _22: AddCIk = Low;
Ace = Ace;
case LT22 : ShowStand:;
ILT22 & 'Ace : ShowBust;
ILT22 & Ace :Sub 10;
endcase;

State Sub_10: AddClk =!CIKIN;
Ace = Low;
goto Test 17,
State ShowBust: AddCIk = Low;
Ace = Ace;
if (Restart==Low) then Clear else

ShowBust;

State ShowStand: AddCIk = Low;
Ace = Ace;

if (Restart==Low) then Clear else ShowStand;

State Zero: goto Clear;

@page
"test_vectors edited...

Figure 4-23. Source File: State Machine (Controller) (Continued)

ABEL-HDL Reference Manual

147

Hierarchy Examples

Hierarchy Examples

The following ABEL-HDL source files show how to combine the three blackjack
examples into one top-level source for implementation in a larger device.

The three lower-level modules are unchanged from the non-hierarchical versions.

The test vectors have been removed.

module bjacktop;
title 'instantiating bjack, muxadd, binbcd'
/I Sub-module prototypes...
bjack interface
(Clk,CIkKIN,GT16,LT22,is_Ace,Restart,CardIn,CardOut,Ena
> AddCIk, Add10,Sub10,Q2..Q0, Ace);
muxadd interface (V0..V4,AddClk,CIr,Add10,Subl10 :> S0..S4 ->
is_Ace);
binbcd interface (S0..S4 -> LT22, GT16, D0..D5);
/I Sub-module instantiations...
BJ functional_block bjack;
MA functional_block muxadd;
BB functional_block binbcd;

/I Top level inputs...

Clk pin; "System clock -- bjack
CardIn,CardOut pin; "Card present switches -- bjack
Restart pin; "Restart game -- bjack
V4.V0 pin; " -- muxadd
Ace pin;
Card =[V4..VO0];
Sensor = [CardIn,CardOut];
_In =[O0 , 1]
InOut =[1, 171
Out =[1, 0]

/I Top level outputs...
D5..D0 pin istype 'com’; " -- binbcd
BCD1 = [D3..D0];
BCD2 = [D5,D4];

ABEL-HDL Reference Manual 148

Hierarchy Examples

/I Top level pins (for observing state machine)...
Q2..Q0 pin istype 'com’;
Add10,Sub10 pin istype ‘com’;
AddClk node istype ‘com,keep’;

Qstate = [Add10,Sub10,Q2,Q1,Q0];
Clear =[1,1,1,1,1];"31
ShowHit =[1,1,1,1,0];"30
AddCard =[1,1,0,0,0];"24
Add_10 =[0,1,0,0,0];"16
Wit =[1,1,00,1];"25
Test_17 =[1,1,01,0]"26
Test 22 =[1,1,0,1,1];"27
ShowStand =[1,1,1,0,0];"28
ShowBust =[1,1,10,1];"29
Sub 10 =[1,0,0,0,1];"17
Zero =[0,0,0,0,0];"0
Hit = IBB.GT16;
Bust = IBB.LT22;
C.X,L,H =.c.,.x.,0,1;

equations

I/l Describe the input connections...
MA.[V4,Vv3,V2V1,V0] = Card;
MA.ClIr = Restart;

BJ.Clk =CIk;
BJ.CIKIN = CIk;
BJ.Restart = Restart;
BJ.Cardin = CardIn;
BJ.CardOut = CardOut;
BJ.Ena =0;

// Describe the output connections...
[D5,D4,D3,D2,01,D0] =BB.[D5,D4,D3,D02,D1,D0];
Add10 = BJ.Add10;

Subl10 = BJ.Sub10;
Qo0 = BJ.QO;

Q1 =BJ.Q1;

Q2 =BJ.Q2;

Ace = BJ.Ace;

/I Describe inter-module connections...
MA.Subl10 =BJ.Subl0;
MA.Add10 = BJ.Add10;
AddClk = BJ.AddCIk;
MA.AddClk = AddCIk;
BB.[S0,S1,S2,S3,54] = MA.[S0,S1,52,S3,54];
BJ.is_ Ace = MA.is_Ace;
BJ.GT16 =BB.GT16;
BJ.LT22 =BB.LT22;

end;

ABEL-HDL Reference Manual

149

Hierarchy Examples

module bjack ;
title 'BlackJack state machine controller'
"Inputs
Clk,CIKIN pin; "System clock
GT16,LT22 pin; "Score less than 17 and 22

is_Ace pin; "Card is ace

Restart pin; "Restart game

CardIn,CardOut pin; "Card present switches

Ena pin;

Sensor = [CardIn,CardOut];

_In =[O0, 1]

InOut =[1, 11

Out =[1, 0]

"Outputs

AddClk pin; "Adder clock

Add10 pin; "Input Mux control

Subl10 pin; "Input Mux control

Q2,Q1,Q0 pin;

Ace pin; "Ace Memory

High,Low =1,0;

H,L,C,X =1,0,.C.,.X.; "test vector charactors

AddClk istype 'com’;
Ace istype 'reg_D, invert’;
Add10,Sub10,Q2,Q1,Q0
Qstate = [Add10,Sub10,Q2,Q1,Q0];

Clear =[1,1,1,1,1];"31

ShowHit =[1,1,110];"30

AddCard =[1,1,00,0];"24

Add_10 =[0,1,0,0,0]"16

Wt =[1,1,0,0,1];"25

Test_17 =[1,1,010]"26

Test_22 =[1,1,0,1,1]"27

ShowsStand =[1,1,10,0]"28

ShowBust =[1,1,10,1];"29

Sub_10 =[1,0,0,0,1];"17

Zero =[0,0,0,0,0];"0

equations

[Qstate,Ace].c = CIk;
[Qstate,Ace].oe = IEna;

ABEL-HDL Reference Manual

istype 'reg_D, invert’;

150

Hierarchy Examples

@dcset
state_diagram Qstate
State Clear: AddClk =!CIKIN;
Ace = Low;
if (Restart==Low) then Clear else ShowHiit;
State ShowHit: AddClk = Low;
Ace = Ace;
if (CardIn==Low) then AddCard else ShowHit;
State AddCard: AddClk =!ICIKIN;
Ace =Ace;
if (is_Ace & 'Ace) then Add_10 else Wt;
State Add_10: AddClk =!CIKIN;

Ace := High;
goto Wi;

State Wt: AddClk = Low;
Ace = Ace;

if (CardOut==Low) then Test_17 else Wt;
State Test_17: AddCIk = Low;

Ace = Ace;

if IGT16 then ShowHit else Test_22;
State Test 22: AddClk = Low;

Ace = Ace;

case LT22 : ShowStand;

ILT22 & !Ace : ShowBust;
ILT22 & Ace :Sub 10;

endcase;
State Sub_10: AddClk =!CIKIN;

Ace = Low;

goto Test 17,
State ShowBust: AddCIk = Low;

Ace = Ace;

if (Restart==Low) then Clear else ShowBust;
State ShowStand: AddClk = Low;

Ace = Ace;

if (Restart==Low) then Clear else ShowStand,;
State Zero: goto Clear,

end

ABEL-HDL Reference Manual

151

Hierarchy Examples

module muxadd ;
title '5-bit ripple adder with input multiplex'

AddCIk,ClIr,Add10,Subl10,is_Ace pin;

v4Vv3,v2,V1,V0 pin;
S4,53,52,51,S0 pin;
C4,C3,Cc2,C1 pin;

XCLH =.X,.C,0,1,
Card =[V4,V3,V2,V1\V0];
Score =[S4,S3,S2,51,S0];
Carryln =[C4,C3,C2,C1, 0];
CarryOut =] X,C4,C3,C2,C1];
ten =[0,1,0,1,0];
minus_ten=[1,0,1, 1, 0];
S4,S3,52,51,S0 istype 'reg’ ;
" Input Multiplexer
Data = Add10 & Subl0 & Card
#1Add10 & Subl0 & ten
Add10 & !'Subl10 & minus_ten;
eguations
Score :=Data $ Score $ Carryln;

CarryOut = Data & Score # (Data # Score) & CarrylIn;

Score.ar = IClr;
Score.c = AddCIk;
is_Ace =Card==1;
end;
module binbcd;

title 'comparator and binary to bcd decoder for Blackjack Machine'

" The 5 -bit binary (0 - 31) score is converted into two BCD outputs.

" The interger division '/' and the modulus operator '%' are used to
" extract the individual digits from the two digit score.

"'Score % 10" will yield the 'units' and
"'Score / 10" will yield the 'tens'

" The 'GT16' and 'LT22' outputs are for the state machine controller.

S$4,53,52,S1,S0 pin;

score =[S4,S3,52,51,S0];
LT22,GT16 pin istype 'com’;
D5,D4 pin istype ‘com’;
bcd2 = [D5,D4];
D3,D02,D1,D0 pin istype 'com’;
bcdl =[D3,D2,D1,D0];

" Digit separation macros
binary =0; "scratch variable

clear macro (a) {@const ?a=0};
inc macro (a) {@const ?7a=?a+1;};

ABEL-HDL Reference Manual

152

Hierarchy Examples

equations
LT22 =(score < 22); "Bust
GT16 = (score > 16); "Hit/ Stand

test_vectors (score -> [GT16,LT22])
1 >[0,1];
6 ->[0,1];
8 ->[0,11];
16 ->[0 ,1]
17 >[1,1];
18 >[1,11];
20 >[1,11;
21 >[1,17];
22 >[1,01]
23 =>[1,01]
24 ->[1,01];
truth_table (score -> [bcd2,bcd1])
0->[0, 07
->[O!1];
>[0, 2]
->[0, 3]
->[0, 4]
_>[015];
->[0!6];
->[O!7];
_>[O!8];
->[O!9];
10 >[1, O];
11 >[1, 1];
12 >[1, 2];
13 >[1, 3];
14 >[1, 4];
15 >[1, 5];
16 >[1, 6];
17 >[1, 7];
18 >[1, 8];
19 >[1, 9];
20 >[2, 0];
21 >[2, 1];
22 >[2, 2];
23 >[2, 3];
24 >[2, 47;
25 ->[2, 5];
26 ->[2, 6];
27 >[2, 7];
28 ->[2, 8];
29 >[2, 9];
30 >[3, 0];
31 >[3,1]

©Coo~NOOUITh,WNE

ABEL-HDL Reference Manual 153

Hierarchy Examples

" This truth table could be replaced with the following macro.

" clear(binary);
@repeat 32 {
binary -> [binary/10,binary%10]; inc(binary);}

" The test vectors will demonstrate the use of the macro.

test_vectors (score -> [bcd2,bcdl])
clear(binary);
@repeat 32 {
binary -> [binary/10,binary%10]; inc(binary);}
end

ABEL-HDL Reference Manual

154

ABEL and ispDesignExpert Projects

ABEL and ispDesignExpert Projects

The following ABEL-HDL source, p6top .abl , (Figure 4-24) instantiates variable
instances of prep6 .abl (Figure 4-25).

module p6top (rep)
title 'Variable instances of PREP6'
@ifb (?rep)
{ @message 'Must specify -arg N'
@exit }
D15..DO0 pin;
Q15..Q0 pin istype 'reg’;
CIk, Rst pin;
Q =[Q15..Q0];
D = [D15..D0];
@const N = ?rep - 1;
prep6 interface (D15..D0, CIk, Rst -> Q15..Q0);
ACC macro (i)
{ @expr {ACC}7?i; }
@consti=0;
@repeat ?rep
{ ACC(i) functional_block prep6;
@consti=i+1;}

equations
ACCO0.[D15..D0] = D;
@consti=0;

@repeat ?rep

{ ACC(i).[CIK, Rst] = [CIK, Rst];
@consti=i+l;}

@const i =0;

@repeat ?rep-1

{ ACC(i+1).[D15..D0] = ACC(i).[Q15..Q0];
@consti=i+1;}

Q = ACC(N).[Q15..QQ];
end

Figure 4-24. Top-level ABEL-HDL Source

ABEL-HDL Reference Manual 155

ABEL and ispDesignExpert Projects

Lower-level Sources

Figure 4-25 shows the lower-level ABEL-HDL file instantiated by p6top .abl . This file

does not contain an interface statement, which is optional in lower-level files.

module prep6
title ‘16-Bit Accumulator’

D15..D0 pin;

Q15..Q0 pin istype ‘reg’;
CIk, Rst pin;

Q =[Q15..Q0];
D = [D15..D0];

@carry 2;
equations
Q:=D+Q;
Q.C =ClIk;
Q.AR = Rst;
end

Figure 4-25.

Lower-level ABEL-HDL Source

ABEL-HDL Reference Manual

156

chapter5 Language Reference

This chapter provides detailed information about each of the language elements in
ABEL-HDL. It assumes you are familiar with the basic syntax discussed in Chapter 1,
“Language Structure.” _ Each entry contains the following sections (if applicable):

m Syntax — is the required syntax for the element.
m Purpose —is a brief description of the intended use of the element.

» Use —is a discussion of the potential uses of the element, including any special
considerations.

m Examples — are examples of the element as it is used in a design description.

m See Also — refers to other elements and discussions, and to design examples
that demonstrate the use of an element.

Basic syntax information (on subjects such as blocks, strings, sets and arguments) is
provided in Chapter 1, “Language Structure.”

ABEL-HDL Reference Manual 157

. ext — Dot Extensions

. ext — Dot Extensions

Syntax

Purpose

Use

signal_name. ext

Dot extensions provide a way to refer specifically to internal signals and nodes
that are associated with a primary signal in your design.

Signal dot extensions describe, more precisely, the behavior of signals in a
logic description, and remove the ambiguities in equations.

You can use ABEL-HDL dot extensions in complex language constructs, such
as nested sets or complex expressions.

Using Pin-to-Pin Vs. Detailed Dot Extensions

Dot extensions allow you to refer to various circuit elements (such as register
clocks, presets, feedback and output enables) that are related to a primary
signal.

Some dot extensions are general purpose and are intended for use with a
wide variety of device architectures. These dot extensions are therefore
referred to as pin-to-pin (or “architecture-independent”). Other dot extensions
are intended for specific classes of device architectures, or require specific
device configurations. These dot extensions are referred to as detailed (or
“architecture-dependent” or “device-specific”) dot extensions.

In most cases, you can describe a circuit using either pin-to-pin or detailed dot
extensions. Which form you use depends on the application and whether you
want to implement the application in a variety of architectures. The
advantages of each method are discussed later in this section.

Table 5-1 lists the ABEL-HDL dot extensions. Pin-to-pin dot extensions are
indicated with a check in the Pin-to-Pin column.

ABEL-HDL Reference Manual 158

. ext — Dot Extensions

Table 5-1. Dot Extensions

Dot Ext. Pin-to-pin Description

ACLR3 W A device-independent asynchronous register reset,
equivalent to .AR with Istype 'buffer' (or .AP with Istype
'invert’).

AP Asynchronous register preset.

AR Asynchronous register reset.

ASET?3 [A device-independent asynchronous register preset,
equivalent to .AP with Istype 'buffer’ (or .AR with Istype
‘invert").

.CE Clock-enable input to a gated-clock flip-flop.

.CLK? O Clock input to an edge-triggered flip-flop.

.CLR?3 (] A device-independent synchronous register reset,
equivalent to .SR with Istype 'buffer’ (or .SP with Istype
'invert').

.COM? [A combinational feedback from the flip-flop data input,

normalized to the pin value and used to distinguish
between pin (.PIN) and internal logic array (.COM
feedback.

D1 When on the left side of an equation, .D is the data
input to a D-type flip-flop; on the right side, .D is
combinational feedback.

.FB [Register feedback.

.FC Flip-flop mode control.

J input to a JK-type flip-flop.

K K input to a JK-type flip-flop.

.LD Register load input.

LE Latch-enable input to a latch.

.LH Latch-enable (high) to a latch.

OE! O Output enable.

.PIN O Pin feedback.

PR? Register preset (synchronous or asynchronous).
.Q Register feedback.

R R input to an SR-type flip-flop.

RE! Register reset (synchronous or asynchronous).

ABEL-HDL Reference Manual 159

. ext — Dot Extensions

Table 5-1. Dot Extensions (Continued)

Dot Ext. Pin-to-pin Description

.S S input to an SR-type flip-flop.

SET 23 [A device-independent synchronous register preset,
equivalent to .SP with Istype 'buffer’ (or .SR with Istype
‘invert").

.SP Synchronous register preset.

SR Synchronous register reset.

T T input to a T-type (toggle) flip flop.

1 Example follows.

2 If Istype ‘buffer’ or 'invert' is specified, the compiler converts these dot extensions to the

equivalent detailed dot extension.
3. Some fitters do not support these dot extensions.

ABEL-HDL Reference Manual 160

. ext — Dot Extensions

Detailed Design Dot Extensions

Table 5-2 shows the dot extensions that are supported (and which of those are
required) for different register types in detailed design descriptions. The required dot
extensions are indicated with a check in the Extension Required column.

Table 5-2. Dot Extensions for Device-specific (detailed) Designs

Extension Supported
Register Type Required Extensions Definition
combinational (no register) .0oe output enable
pin pin feedback
.com combinational feedback
D-type flip-flop O .clk clock
0 d data input
fc flip-flop mode control
.0e output enable
.q flip-flop feedback
.Sp synchronous preset
.Sr synchronous reset
.ap asynchronous preset
.ar asynchronous reset
pin pin
JK-type flip-flop 0 .clk clock
O J j input
O Kk k input
fc flip-flop mode control
.0e output enable
.q flip-flop feedback
.Sp synchronous reset
.Sr synchronous reset
.ap asynchronous preset
ar asynchronous reset
pin pin feedback
SR-type flip-flop 0 .clk clock
O .S set input
O I reset input
.0oe output enable
.q flip-flop feedback
.Sp synchronous preset
.Sr synchronous reset
.ap asynchronous preset
.ar asynchronous preset
pin pin feedback

ABEL-HDL Reference Manual 161

. ext — Dot Extensions

Table 5-2. Dot Extensions for Device-specific (detailed) Designs (Continued)

Extension Supported
Register Type Required Extensions Definition
T-type flip-flop O .clk clock
O 1z toggle input
.0oe output enable
.q flip-flop feedback
.Sp synchronous preset
.Sr synchronous reset
.ap asynchronous preset
.ar asynchronous reset
pin pin feedback
L-type latch U .d data input
O le latch enable input to a latch
dh latch enable (high) input to
.oe a latch
.q output enable
pin flip-flop feedback
pin feedback
Gated clock D flip-flop O .clk or .ce clock or clock enable
] d data input
.0oe output enable
.q flip-flop feedback
pin pin feedback

ABEL-HDL Reference Manual 162

. ext — Dot Extensions

Pin-to-Pin Design Dot Extensions

Table 5-3 shows the dot extensions that are allowable (and which of those are

required) for pin-to-pin design descriptions. The required dot extensions are indicated
with a check in the Required column.

Table 5-3. Dot Extensions for Architecture-independent (pin-to-pin) Designs

Allowable
Register Type Required Extensions Definition
combinational (no register) none output
.0e output enable
pin pin feedback
registered logic .Clr synchronous preset
.aclr asynchronous preset
.set synchronous set
.aset asynchronous set
O .clk clock
.com combinational feedback
fb registered feedback
pin pin feedback

Figure 5-1 through Figure 5-8 show the effect of each dot extension. The actual
source of the feedback may vary from that shown.

lstypa “reg’
OE

CLR [.ACLR) |

.EﬂM——{{ﬂ————D 0

L ——————— Q

SET (LASET) !

FE 3i]

FM

Figure 5-1. Pin-to-pin Dot Extensions in an Inverted Output Architecture

ABEL-HDL Reference Manual

163

. ext — Dot Extensions

Isiype 'rag’

OE
SET (.ASET)

coM——0 @

CLE K (W]

CLA [ACLR) !
FB

PIN

Figure 5-2. Pin-to-pin Dot Extensions in a Non-inverted Output
Architecture

Istype 'reg_d nvert
LOE

5P (AP |

PRESET o
Oo————0 L]

CLK —— g

SR AR) |
L)
PIN

Figure 5-3. Detailed Dot Extensions for a D-type Flip-flop Architecture

ABEL-HDL Reference Manual 164

. ext — Dot Extensions

DE
SF (AP}

CLK

SH [LAR)
L
JPIN

Istype ‘reg_timverd

T

FRESET

CLEAR

]

Q

Figure 5-4. Detailed Dot Extensions for a T-type Flip-flop Architecture

Istype reg_sr inver!’

OE

SP (AP

LLK
H

o

FHRHESET

SA {.AR)
O

PIMN

Figure 5-5. Detailed Dot Extensions for an RS-type Flip-flop Architecture

ABEL-HDL Reference Manual

165

. ext — Dot Extensions

Istype reg_jkinvert'
OE

SP (AP

|
PRESET
Q

CLK——— 14
K

2l

CLEAR
SR AR |

a

PIN

Figure 5-6. Detailed Dot Extensions for a JK-type Flip-flop Architecture

Istypa ‘reg_Linwvert’

JJE
AP AR |
PRESET
o O o »—
IH— 1 LH =
CLEAR aQ
SR AR |
o
PIM
IH O Q
1 0 0
T |
{ ¥oLesid

Figure 5-7. Detailed Dot extensions for a Latch with active High Latch
Enable

ABEL-HDL Reference Manual 166

. ext — Dot Extensions

Istype ‘reg Linverl

LDE
SP (AP} |
PRESET
LD—D0 il
LlE— JlE a
CLEAH
SR {AR) |
A
PIM
LE D O
i H i
i 1 1
i { Lestd

Figure 5-8. Detailed Dot Extensions for a Latch with Active Low Latch
Enable

Islypa redq ginveart

OE
&P (AP |
PRESET
o O aQ
[oTY qu—
CE— |cE =
CLEAR
SR [AR) |
Q
PIN
CE CLK D Q
X 0 0 0
o0 1 1
{1 X LastQ

Figure 5-9. Detailed Dot Extensions for a Gated-clock D Flip-flop

ABEL-HDL Reference Manual 167

. ext — Dot Extensions

Examples

These equations precisely describe the desired circuit as a toggling D-type
flip-flop that is clocked by the input Clock, assuming ISTYPE 'reg_D,buffer":

Q1l.clk = Clock;
Q1.D =1Q1.Q # Preset;

Register preset:

Q2.PR=S & IT;

Register reset:

Q2.RE=R & T;

The same circuit can be described without ISTYPE 'buffer' as:

Q1l.clk = Clock;
Q1 :='Q1.FB # Preset;
Q2.SET=S&!T; Q2.CLR=R & 'T;

3-state Output Enables

Output enables are described in ABEL-HDL with the .0oe dot extension
applied to an output signal name. For example,

Ql.0e = lenab;

The equation specifies that the input signal enab controls the output enable for
an output signal named Q1.

D NOTE If you explicitly state the value of a fixed output enable, you
restrict the device fitters' ability to map the indicated signal to a
simple input pin instead of a three-state 1/0 pin.

See Also
Istype
“Attribute Assignment” in Chapter 1, Language Structure”
“Feedback Considerations — Using Dot Extensions” in

Chapter 2, Design Considerations”

ABEL-HDL Reference Manual 168

= — Constant Declarations

= — Constant Declarations

Syntax
d [, id]..= expr [, expr].;
Purpose
A constant declaration that defines constants used in a module.
Use
id An identifier naming a constant to be used within a
module.
expr An expression defining the constant value.

|:| NOTE The equal sign (=) used for constant declarations in the
Declarations section is also used for equations in the
Equations section. See “Operators, Expressions, and
Equations” in Chapter 1, “Language Structure.”

A constant is an identifier that retains a constant value throughout a module.
The identifiers on the left side of the equals sign are assigned the values listed
on the right side. There is a one-to-one correspondence between the
identifiers and the expressions listed. There must be one expression for each
identifier.

The ending semicolon is required after each declaration.

Constants are helpful when you use a value many times in a module,
especially when you may be changing the value during the design process.
Constants allow you to change the value once in the declaration of the
constant, rather than changing the value throughout the module.

Constant declarations may not be self-referencing. The following examples will
cause errors:

X=X;

a=b;
b=a

An include file, constant .inc , in the ABEL-HDL library file contains
definitions for the most frequently used ABEL-HDL constants. To include this
file, enter

Library 'constant’ ;

ABEL-HDL Reference Manual 169

= — Constant Declarations

Examples
ABC =3*17; " ABC is assigned the value 51
Y ='Bc'; "Y = "h4263;
X =X.; " X means 'don't care'
ADDR =[1,0,15]; " ADDR is a set with 3 elements
AB,C=51,0],6; "3 constants declared here
D pin 6; " see next line
E=[5*7,D], " signal names can be included
G =[1,2]+[3,4]; " set operations are legal
A=B&C; " operations on identifiers are valid
A =[B,C]; " set and identifiers on right

Using Intermediate Expressions

You can use intermediate (constant) expressions in the declarations section to
reduce the number of output pins required to implement multi-level functions.
Intermediate expressions can be useful when a module has repeated expressions. In
general, intermediate expressions

= decrease the number of output pins required, but
= increase the amount of logic required per output

A constant expression is interpreted as a string of characters, not as a function to be
implemented. For example, for the following Declarations and Equations

Declarations
TMP1 = [A3..A0] == [B3..B0];
TMP2 = [A7..Ad] == [B7..B4];
Equations
F=TMP1 & TMP2;

the compiler substitutes the declarations into the equations, creating

F = (A7 !$ B7) & (A6 !$ B6) & (A5 I$ B5) & (A4 I$ B4) &
(A31$ B3) & (A2 I$ B2) & (A1 !$ B1) & (A0 !$ BO);

ABEL-HDL Reference Manual 170

= — Constant Declarations

In contrast, if you move the constant declarations into the equations section:

Declarations
TMP1,TMP2 pin 18,19
Equations
TMP1 = [A3..A0] == [B3..BO];
TMP2 = [A7..A4] == [B7..B4];
F=TMP1 & TMP2;

the compiler implements the equations as three discrete product terms, with the
result

TMP1 =(A3 !$ B3) & (A2 !$ B2) & (Al !$ B1) & (A0 !$ BO);
TMP2 =(A7 !$ B7) & (A6 !$ B6) & (A5 !$ B5) & (A4 !$ B4);
F=TMP1 & TMP2;

The first example (using intermediate expressions) requires one output with 16
product terms, the second example (using equations) requires three outputs with less
than 8 product terms per output. In some cases, the number of product terms
required for both methods can be reduced during optimization.

|:| NOTE As an alternate method for specifying multi-level circuits such
as this, you can use the @Carry directive. See “@Directive —
Directives” on page 173

See Also

Declarations
Equations
“Constants” _in Chapter 1, Language Structure”

ABEL-HDL Reference Manual 171

attr' — Signal Attributes

attr' — Signal Attributes
See |stype.

ABEL-HDL Reference Manual 172

@Directive — Directives

@ Directive — Directives

Purpose
Directives control the contents or processing of a source file. You can use
directives to conditionally include sections of ABEL-HDL source code, bring
code in from another file, and print messages during processing. The
available directives are given on the following pages.

Use

Some of the directives use arguments to determine how the directive is
processed. The arguments can be actual arguments, or dummy arguments
preceded by question marks (?). The rules applying to actual and dummy
arguments are presented in Chapter 1, “Language Structure.”

ABEL-HDL Reference Manual 173

@AIlternate — Alternate Operator Set

@Alternate — Alternate Operator Set

Syntax
@ALTERNATE
Use
@Alternate enables an alternate set of operators. If you are more familiar with
the alternate set, you may want to use this directive.
The alternate operators remain in effect until the @Standard directive is used
or the end of the module is reached.
Using the alternate operator set precludes use of the ABEL-HDL addition,
multiplication, and division operators because they represent the OR, AND,
and NOT logical operators in the alternate set. The standard operators !, &, #,
$, and '$ still work when @Alternate is in effect.
The alternate operator set is listed in Table 5-4.
Table 5-4. Alternate Operator Set
Alternate
ABEL-HDL Operator Operator Description
! / NOT
& * AND
+ OR
$ i XOR
I$ Dx XNOR
See Also
@Standard

ABEL-HDL Reference Manual

174

@-Carry — Maximum Bit-width for Arithmetic Functions

@Carry — Maximum Bit-width for Arithmetic Functions

Syntax

Use

Examples

See Also

@CARRYexpression :

expression A numeric expression.

The @Carry directive allows you to reduce the amount of logic required for
processing large arithmetic functions by specifying how adders, counters, and
comparators are generated. The number generated by the expression
indicates the maximum bit-width to use when performing arithmetic functions.

For example, for an 8-bit adder, a @Carry statement with an expression which
results in 2 would divide the 8-bit adder into four 2-bit adders, creating
intermediate nodes. This would reduce the amount of logic generated.

The statement:
@carry 1;

generates chains of one-bit adders and comparators for all subsequent adder
and comparator equations (instead of the full look-ahead carry equations
normally generated).

This directive automatically generates additional combinational nodes. Use
different values for the @Carry statement to specify the types of adders and
comparators required for the design. To specify that full lookahead carry
should be generated (the default if no @Carry has been specified) use the
statement:

@carry 0

@carry 2; "generate adder chain
[s8..s0] = [.x.,a7..a0]+[.x.,b7..b0]

= (Constant Declarations)
“Constants” _in Chapter 1, Language Structure”

ABEL-HDL Reference Manual 175

@Const — Constant Declarations

@Const — Constant Declarations

Syntax
@CONSTd = expression ;

Use
id An identifier.
expression An expression.
@Const allows new constant declarations to be made in a source file outside
the normal (and required) declarations section.
The @Const directive defines internal constants inside macros. Constants
defined with @Const override previous constant declarations. You cannot use
@Const to redefine an identifier that was used earlier in the source file as
something other than a constant (for example, a macro or pin).

Examples
@CONST count = count + 1;

See Also

= (Constant Declarations)
“Constants” _in Chapter 1, Language Structure”

ABEL-HDL Reference Manual 176

@Dcset — Don't Care Set

@Dcset — Don't Care Set

Syntax

Use

@DCSET

ABEL-HDL uses don't-care conditions to help optimize partially-specified logic
functions. Partially-specified logic functions are those that have less than 2n
significant input conditions, where n is the number of input signals. The
@Dcset directive allows the optimization to use either 1 or O for don't cares to
optimize these functions.

A CAUTION The @Dcset directive overrides Istype attributes 'dc’, 'neg’

and 'pos’.

See Also

@Onset
Istype 'dc’
?:= and ?= Assignment Operators

Truth_table
“Precautions for Using Don't Care Optimization” in
Chapter 2, Design Considerations”

ABEL-HDL Reference Manual 177

@Dcstate — State Output Don't Cares

@Dcstate — State Output Don't Cares

Syntax
@DCSTATE

Use
When @Dcstate is specified, all unspecified state diagram states and
transitions are applied to the design outputs as don't cares. You must use this
option in combination with @Dcset or with the 'dc' attribute.

See Also
@Dcset
Istype 'dc’

ABEL-HDL Reference Manual 178

@EXit — EXxit Directive

@Exit — Exit Directive
Syntax
@EXIT

Use

The @EXit directive stops processing of the source file with error bits set.
(Error bits allow the operating system to determine that a processing error has

occurred.)

ABEL-HDL Reference Manual 179

@Expr — Expression Directive

@EXxpr — Expression Directive

Syntax
@EXPR [{ block }] expression ;
Use
block A block.
expression An expression.
@EXxpr evaluates the given expression and converts it to a string of digits in the
default base numbering system. This string and the block are then inserted
into the source file at the point where the @Expr directive occurs. The
expression must produce a number.
@EXxpr can contain variable values and you can use it in loops with @Repeat.
Examples

@expr {ABC} "B11 ;

Assuming that the default base is base ten, this example causes the text ABC3
to be inserted into the source file.

ABEL-HDL Reference Manual 180

@If — If Directive

@If — If Directive

Syntax
@IF expression { block }
Use
expression An expression.
block A block of text.
@If includes or excludes sections of code based on the value of an
expression. If the expression is non-zero (logical true), the block of code is
included.
Dummy argument substitution is supported in the expression.
Examples

@if(A>17){C=D$F;}

ABEL-HDL Reference Manual 181

@Ifb — If Blank Directive

@Ifb — If Blank Directive

Syntax
@IFB (arg) { block }
Use

arg An actual argument, or a dummy argument preceded
by a “?”
block A block of text.

@Ifb includes the text contained within the block if the argument is blank (if it
contains 0 characters).

Examples

@IFB ()
{text here is included with the rest of the source file.}

@IFB (hello) { this text is not included }

@IFB (?A) {this text is included if no value is substituted for
A}

See Also

“Arguments and Argument Substitution” in
Chapter 1, Language Structure”

ABEL-HDL Reference Manual 182

@Ifdef — If Defined Directive

@Ifdef — If Defined Directive

Syntax

@IFDEF id { block }
Use

id An identifier.

block A block of text.

@Ifdef includes the text contained within the block, if the identifier is defined.
Examples

A pin5;
@ifdef A { Base = *hE0QO ; }
"the above assignment is made because A was defined

ABEL-HDL Reference Manual 183

@Ifiden — If Identical Directive

@Ifiden — If Identical Directive

Syntax

@IFIDEN (argl,arg2){ block }
Use

argl1,2? Actual arguments, or dummy argument names

preceded by a “?”

block A block of text.

The text in the block is included if argl and arg2 are identical.
Examples

@ifiden (?A,abcd) { ?A device 'P16R4"; }

A device declaration for a P16R4 is made if the actual argument substituted for
A is identical to abcd.

ABEL-HDL Reference Manual 184

@Ifnb — If Not Blank Directive

@Ifnb — If Not Blank Directive

Syntax
@IFNB (arg){ block }
Use
arg An actual argument, or a dummy argument name
preceded by a “?”
block A block of text.
@Ifnb includes the text contained within the block if the argument is not blank
(if it contains more than O characters).
Examples

@IFNB () { ABEL-HDL source here is not included with the rest
of the source file. }

@IFNB (hello) { this text is included }

@IFNB (?A) {this text is included if a value is substituted for
A}

ABEL-HDL Reference Manual 185

@Ifndef — If Not Defined Directive

@Ifndef — If Not Defined Directive

Syntax
@IFNDEF id { block }
Use
id An identifier.
block A block of text.
@Ifndef includes the text contained within the block, if the identifier is
undefined. Thus, if no declaration (pin, node, device, macro, or constant) has
been made for the identifier, the text in the block is inserted into the source file.
Examples

@ifndef A{Base="hE000;}
"if A is not defined, the block is inserted in the text

ABEL-HDL Reference Manual 186

@Ifniden — If Not Identical Directive

@Ifniden — If Not Identical Directive

Syntax
@IFNIDEN (argl,arg2){ block }
Use
argl1,2? Actual arguments, or dummy argument names
preceded by a “?”
block A block of text.
The text in the block is included in the source file if argl and arg2 are not
identical.
Examples

@ifniden (?A,abcd) { ?A device 'P16R8'; }

A device declaration for a P16R8 is made if the actual argument substituted for
A is not identical to abcd.

ABEL-HDL Reference Manual 187

@Include — Include Directive

@Include — Include Directive

Syntax
@INCLUDE filespec
Use
filespec A string specifying the name of a file.

@Include causes the contents of the specified file to be placed in the
ABEL-HDL source file. The inclusion begins at the location of the @Include
directive. The file specification can include an explicit drive or path
specification that indicates where the file is found. If no drive or path
specification is given, the default drive or path is used.

Examples

@INCLUDE 'macros.abl' "file specification
@INCLUDE "“\incs\\macros.inc' "DOS paths require 2 slashes

See Also

Library

ABEL-HDL Reference Manual 188

@Irp — Indefinite Repeat Directive

@Irp — Indefinite Repeat Directive

Syntax
@IRP dummy _arg (arg [, arg]...){ block }
Use
dummy_arg A dummy argument.
arg An actual argument, or a dummy argument name
preceded by a “?”
block A block of text.
@Irp causes the block to be repeated in the source file n times, where n
equals the number of arguments contained in the parentheses. Each time the
block is repeated, the dummy argument takes on the value of the next
successive argument.
Examples
@IRP A (1, "HOA,0)
{B="A:}
results in:
B=1;
B ="HOA;
B=0;

which is inserted into the source file at the location of the @Irp directive.
Note that multiple assignments to the same identifier result in an implicit OR.

Note that if the directive is specified like this:

@IRP A (1,"HOA,0)
{B="A;}

the resulting text would be:
B=1;B="HOA;B=0;

The text appears all on one line because the block in the @Irp definition
contains no end-of-lines. Remember that end-of-lines and spaces are
significant in blocks.

ABEL-HDL Reference Manual 189

@Irpc — Indefinite Repeat, Character Directive

@Irpc — Indefinite Repeat, Character Directive

Syntax
@IRPC dummy _arg (arg){ block }
Use
dummy_arg A dummy argument.
arg An actual argument, or a dummy argument name
preceded by a “?”
block A block.
@Irpc causes the block to be repeated in the source file n times, where n
equals the number of characters contained in arg. Each time the block is
repeated, the dummy argument takes on the value of the next character.
Examples
@IRPC A (Cat)
{B="2A;
}
results in:
B=C;
B=a;
B=t;

which is inserted into the source file at the location of the @Irpc directive.

ABEL-HDL Reference Manual 190

@Message — Message Directive

@Message — Message Directive

Syntax
@MESSAGES$tring '

Use
string Any string.
@Message sends the message specified in string to your monitor. You can
use this directive to monitor the progress of the parsing step of the compiler, or
as an aid to debugging complex sequences of directives.

Examples

@message 'Includes completed'

ABEL-HDL Reference Manual 191

@Onset — No Don't Care's

@Onset — No Don't Care's

Syntax
@ONSET
Use
The @Onset directive disables the use of don't care input conditions for
optimization.
See Also
@Dcset
Istype 'dc’

ABEL-HDL Reference Manual 192

@Page — Page Directive

@Page — Page Directive
Syntax
@PAGE
Use

Send a form feed to the listing file. If no listing is being created, @Page has no
effect.

ABEL-HDL Reference Manual 193

@Radix — Default Base Numbering Directive

@Radix — Default Base Numbering Directive

Syntax

Use

Examples

@RADIX expr ;

expr An expression that produces the number 2, 8, 10 or
16 to indicate a new default base numbering.

The @Radix directive changes the default base. The default is base 10
(decimal). This directive is useful when you need to specify many numbers in
a base other than 10. All numbers that do not have their base explicitly stated
are assumed to be in the new base. (See “Numbers” in

Chapter 1, “Language Structure.”)

The new-specified default base stays in effect until another @Radix directive
is issued or until the end of the module is reached. Note that when a new

@Radix is issued, the specification of the new base must be in the current
base format.

When the default base is set to 16, all numbers in that base that begin with an
alphabetic character must begin with leading zeroes.

@radix 2; "change default base to binary
@radix 1010 ; "change from binary to decimal

ABEL-HDL Reference Manual 194

@Repeat — Repeat Directive

@Repeat — Repeat Directive

Syntax
@REPEATexpr { block }
Use
expr A numeric expression.
block A block.
@Repeat causes the block to be repeated n times, where nis specified by
the constant expression.
Examples

The following use of the repeat directive,
@repeat 5 {H,}

results in the insertion of the text “H,H,H,H,H,” into the source file. The
@Repeat directive is useful in generating long truth tables and sets of test
vectors. Examples of @Repeat can be found in the example files.

ABEL-HDL Reference Manual 195

@Setsize — Set Indexing

@Setsize — Set Indexing

Syntax

Purpose

Example

@SETSIZE [expression];

The @Setsize directive generates a number corresponding to the number of
elements in the expression, which must be a set. This directive is useful for
set indexing operations.

@SETSIZE [a,b,c]
generates the number 3.

For set indexing, you can use the @setsize directive in macros in the
following manner:

high macro (s) {?S[@SETSIZE(?S);-1..@SETSIZE(?S);/2-1]};

The high macro returns the upper half of a set of any size (the high 4 bits of an
8-bit set, for example).

D NOTE The terminating semicolons are required.

See Also

“Set Indexing” _in Chapter 1, Language Structure”

ABEL-HDL Reference Manual 196

@Standard — Standard Operators Directive

@ Standard — Standard Operators Directive
Syntax
@STANDARD
Use

The @Standard option resets the operators to the ABEL-HDL standard. The
alternate set is chosen with the @Alternate directive.

ABEL-HDL Reference Manual 197

Async_reset and Sync_reset

Async_reset and Sync_reset

Syntax
SYNC_RESETsymbolic_state id : input_expression ;
ASYNC_RESETsymbolic_state id : input_expression ;
Purpose
In symbolic state descriptions, the SYNC_RESET and ASYNC_RESET
statements specify synchronous or asynchronous state machine reset logic in
terms of symbolic states.
Use
symbolic_state id An identifier used for reference to a symbolic state.
input_expression Any expression.
Examples
ASYNC_RESET Start : Reset ;
SYNC_RESET Start : Reset ;
See Also
State
State_diagram
“Using Symbolic State Descriptions” in

Chapter 2, Design Considerations”

ABEL-HDL Reference Manual 198

Case

Case

Syntax

Purpose

Use

CASE expression : state exp ;
[expression . state exp ;]...
ENDCASE ;

Use the CASE statement in a state_diagram to indicate transitions of a state
machine when multiple conditions affect the state transitions.

expression An expression.
State_exp An expression identifying the next state, optionally
followed by WITH transition equations.

You can nest CASE statements with If-Then-Else, GOTO, and other CASE
statements, and you can use equation blocks.

|:| NOTE Equation blocks used within a conditional expression such as

IF-THEN, CASE, or WHEN-THEN result in logic functions that
are logically ANDed with the conditional expression that is in
effect.

The state machine advances to the state indicated by state _exp (following the
expression that produces a true value). If no expression is true, the result is
undefined, and the resulting action depends on the device being used. (For
devices with D flip-flops, the next state is the cleared register state.) For this
reason, you should be sure to cover all possible conditions in the CASE
statement expressions. If the expression produces a numeric rather than a
logical value, 0 is false and any non-zero value is true. The expressions
contained within the CASE-ENDCASE keywords must be mutually exclusive
(only one of the expressions can be true at any given time). If two or more
expressions within the same CASE statement are true, the resulting equations
are undefined.

ABEL-HDL Reference Manual 199

Case

Examples

"Mutually exclusive Case statement
casea==0:1;

a==1:2;

a==2:3;

a==3:0;
endcase ;

"Not mutually exclusive Case statement

case (a==0):1;
@a==0)&B==0):0;

endcase ;

See Also

State_diagram
Goto
If-then-else
With

ABEL-HDL Reference Manual 200

Cycle

Cycle

Syntax
CYCLE signal_name (logic_value | integer)
(logic_value | integer)
[(logic_value), integer)];
Use
logic value The logic 1fsvalue can be either O or 1.
This keyword specifies the signal to repeat until the end of simulation. The
default time unit is nano-second.
Example
cycle clkl (0,3ns) (1,5ns);
See Also
Test _vectors
Wait
flicker.abl

ABEL-HDL Reference Manual

201

Constant Declarations

Constant Declarations

See = (Constant Declarations)

ABEL-HDL Reference Manual 202

Declarations

Declarations

Syntax
DECLARATIONSdeclarations
Purpose
The declarations keyword allows you to declare declarations (such as sets or
other constants) in any part of the ABEL-HDL source file.
Use
declarations You can use any declarations after the
DECLARATIONS keyword.
The DECLARATIONS keyword is not necessary for declarations immediately
following the module and/or title statement(s).
Examples

An example of declared equations is shown below:

module castle
moat device 'P16V8C'; "declarations implied
AB pin 1,2;
Outl pin 15 istype 'com’;
Equations
Outl = A & B;

Declarations "declarations keyword required
C,D,E\F pin3,4,56;
Out2 pin 16 istype 'com’;
Templ=C &D;
Temp2 =E &F;

Equations

Out2 = Templ # Temp2;
end;

ABEL-HDL Reference Manual 203

Device

Device
Syntax
device_id DEVICE real device ;
Purpose
The device declaration statement associates the device name used in a
module with an actual programmable logic device on which designs are
implemented.
Use
device _id An identifier used for the programmer to load file
names.
real_device A string describing the architecture name of the

real device represented by device_id.

The device declaration is optional.

You should give device identifiers, used in device declarations, valid file names
since JEDEC files are created by appending the extension .jed to the
identifier. The architecture name of the programmable logic device is indicated
by the string, real_device.

The ending semicolon is required.

ABEL-HDL Reference Manual 204

End

End
Syntax
END module _name
Purpose
The end statement denotes the end of the module.
Use

The end statement can be followed by the module name. For multi-module
source files, the module name is required.

ABEL-HDL Reference Manual 205

Equations

Equations
Syntax

Purpose

Use

EQUATIONS
element [?]=
element [?]:=

condition :
condition :

when-then-else _statement ;

<inst_name > < macro_name> ([< mcr_port >[{,[<

mcr_port >]y);

The equations statement defines the beginning of a group of equations
associated with a device.

condition

element

expression

=, =, ?=and ?:=

when-then-else
inst_name
macro_name

mcr_port

An expression.

An identifier naming a signal, set of signals, or
actual set to which the value of the expression is
assigned.

An expression.

Combinational and registered (pin-to-pin) on-set
and dc-set assignment operators.

When-then-else statements.
Identifier.
Identifier; Lattice system macro name.

Signal(s), signal set, or boolean expressions.

Equations specify logic functions with an extended form of Boolean algebra.

A semicolon is required after each equation.

The equations following the equation statement are equations as described in
Chapter 1, “Language Structure.”

The syntax

<inst_name > < macro_name> ([< mcr_port >}{,[<

mcr_port >]});

is enhanced to support Lattice system macros in ABEL-HDL.

When the Lattice system macros are being called, the user defined macro port
numbers must match the macro need.

The <mcr_port> is the signal(s) in the current design. Two consecutive
commas mean a macro port is not connected. The output port of a macro can
be dangled, while the input ports or bidirectional ports cannot be dangled.

ABEL-HDL Reference Manual 206

Equations

Boolean expressions and special constants can be used on Lattice macro’s

input ports, while they cannot be used on output or bidirectional ports.
Inversion on output ports is allowed.

A CAUTION Use the := and ?:= operators only when writing pin-to-pin

registered equations. Use the = and ?= assignment
operators for registered equations with detailed dot
extensions.

Examples

See Also

A sample equations section follows:

equations

A=B&C#A;

W,Y]=3;

IF=B==0C);

Output.D = In1 # In2

bl cbul4 ([g0..93], , ci, clk, cd); // Lattice system macro
// cbul4 used

When-then-else

Module

State_diagram

Truth_table

“Operators, Expressions, and Equations” in
Chapter 1, Language Structure”

ABEL-HDL Reference Manual

207

Functional _block

Functional block

Syntax

Purpose

Use

DECLARATIONS
instance_name FUNCTIONAL_BLOCK source_name ;

EQUATIONS
instance_name . port name = signal_name ;

You can use a FUNCTIONAL_BLOCK declaration in an upper-level
ABEL-HDL source to instantiate a declared lower-level module and make the
ports of the lower-level module accessible in the upper-level source. You must
declare modules with an interface declaration before you can instantiate them
with a FUNCTIONAL_BLOCK statement.

instance_name A unique identifier for this instance of the functional
block in the current source.

source_name The name of the lower-level module that is being
instantiated.

D NOTE When a module is instanced by an upper-level source, any

signal attributes (explicit or implied) are inherited by the
upper-level source signals. Therefore, you do not need to
specify ISTYPEs in higher-level sources for instantiated
signals.

Creating Multiple Instances

You can use the range operator (..) to instantiate multiple instance names of
the module. For example,

CNTO..CNT3 functional_block cnt4 ;

creates 4 instances of the lower-level module cnt4.

ABEL-HDL Reference Manual 208

Functional _block

Mapping Ports to Signals

Examples

Signal names are mapped to port names, using equations (similar to wiring the
signals on a schematic). You need to specify only the signals used in the
upper-level source, if default values have been specified in the lower-level
module interface statement. See “Interface (lower-level)” in this chapter for
more information on setting default values.

To specify the signal wiring, map signal names to the lower-level module port
names with dot extension notation. There are three kinds of wire: input,
output, and interconnect.

Input Wire Connects lower-level module inputs to upper-level
source inputs.
Instance.port = input

Output Wire Connects upper-level source outputs to lower-level

module outputs.
output = instance.port

Interconnect Wire Connects the outputs of one instance of a
lower-level module to another instance's inputs.

Instance0.port = instancel.port

module counter;

cnt4 interface (ce, ar, clk ->[q0..q3]);

I/l cnt4's top-level interface declaration.

CNTO functional_block cnt4; // Four instances of cnt4.

Clk, AR, CE pin;
Q0..Q3 pin;

equations
CNTO.[clk, ar, ce] = [CIk; AR, CE];

/I Connecting to Clk, AR, and CE inputs.

[Q0..Q3] = CNTO0.[g0..g3]; // Connecting to Q0..Q3 outputs.
end

Figure 5-10 shows how the above ABEL-HDL file wires the upper-level
source's signals to the lower-level module's ports. Note that the above file
instantiates four instances of cnt4, but only one (CNTO) is wired.

ABEL-HDL Reference Manual 209

Functional _block

Overriding Default Values

You can override the default values given in a lower-level module's interface
statement by specifying default equations in the higher-level source. For
example, if you have specified a default value of 1 for the signal ce in interface
cnt4 (but in instance CNTO, you want ce to be 0), you would write:

CNTO.ce=0;

This equation overrides the 1 with a 0. If you override the default values, you
may want to re-optimize the post-linked design.

i CNTO

ce ql:l 0
ar qt
TR clk q2

q3 Q2

I“I

Figure 5-10. Wiring of CNTO

Unused Outputs (No Connects)

If you do not want to use a lower-level module's outputs, specify them as No
Connects (NC) by not wiring up the port to a physical pin. For example, to make a
3-bit counter out of a 4-bit counter in the upper-level source, you might use the
following wiring equations:

g2..q0 pin ; "upper-level signals
Equations
[92..90] = CNT_A.[g2..q0]

See Also

Interface (top-level)
“Hierarchy in ABEL-HDL” __in Chapter 2, Design Considerations”

ABEL-HDL Reference Manual 210

Fuses

Fuses

Syntax

Purpose

Use

FUSES
fuse_number = fuse value ;
or
FUSES
[fuse_number set = fuse value

The FUSES section explicitly declares the state of any fuse in the targeted
device.

fuse _number The fuse number obtained from the logic diagram of
the device.

fuse_number_set The set of fuse numbers (contained in square
brackets).

fuse value The number indicating the state of fuse(s).

The FUSES statement provides device-specific information, and precludes
changing devices without editing the statement in the source file.

Fuse values that appear on the right side of the = symbol can be any number.
If a single fuse number is specified on the left side of the = symbol, the least
significant bit (LSB) of the fuse value is assigned to the fuse. A 0 indicates an
intact fuse and a 1 indicates a blown fuse. In the case of multiple fuse
numbers, the fuse value is expanded to a binary number and truncated or
given leading zeros to obtain fuse values for each fuse number.

A CAUTION When fuse states are specified using the fuses section,

the resulting fuse values supersede the fuse values
obtained through the use of equations, truth tables and
state diagrams, and affect device simulation accordingly.

ABEL-HDL has a limit of 128 fuses per statement, due to the set size
limitations.

ABEL-HDL Reference Manual 211

Fuses

Examples

FUSES
3552=1;
[3478...3491] = "Hff;

ABEL-HDL Reference Manual 212

Goto

Goto

Syntax
GOTOstate _ exp

Purpose
The GOTO statement is used in the state_diagram section to cause an
unconditional transition to the state indicated by state exp.

Use

State_exp An expression identifying the next state, optionally
followed by WITH transition equations.

GOTO statements can be nested with IFF-THEN-ELSE and CASE statements.
Examples

GOTO0; ‘"goto state O
GOTO x+y ; "goto the state x +y

See Also

State_diagram
Case
If-then-else
With

ABEL-HDL Reference Manual 213

If-Then-Else

If-Then-Else

Syntax
IF exp THENSstate_exp
[ELSE state exp];
Chained IF-THEN-ELSE:

IF expr THEN state_exp
ELSE IF exp THEN state _exp
ELSE state exp

Nested IF-THEN-ELSE:

IF exp THEN state_exp
ELSE IF exp THEN
IF exp THEN state _exp
ELSE state_exp
ELSE state_exp

Nested IF-THEN-ELSE with Blocks:

IF exp THEN
{ IF exp THEN state_exp
IF exp THEN state_exp

}
ELSE state exp

Purpose

The if-then-else statements are used in the state_diagram section to
describe the progression from one state to another.

Use

exp An expression.

State _exp An expression or block identifying the next state,
optionally followed by WITH transition equations.

A CAUTION IF-THEN-ELSE is only supported within a
STATE_DIAGRAM description. Use WHEN-THEN-ELSE

for equations.

ABEL-HDL Reference Manual

214

If-Then-Else

D NOTE Equation Blocks used within a conditional expression (such as
IF-THEN, CASE, or WHEN-THEN) results in logic functions
that are logically ANDed with the conditional expression that is
in effect.

The expression following the IF keyword is evaluated, and if the result is true,
the machine goes to the state indicated by the state exp, following the THEN
keyword. If the result of the expression is false, the machine jumps to the state
indicated by the ELSE keyword.

Any number of IF statements may be used in a given state, and the ELSE
clause is optional. The indenting and formatting of an IF-THEN-ELSE
statement is not significant: breaking a complex transition statement across
many lines (and indenting) improves readability.

IF-THEN-ELSE statements can be nested with GOTO, CASE, and WITH
statements. IF-THEN-ELSE and CASE statements can also be combined and
nested.

Chained IF-THEN-ELSE Statements:

Any number of IF-THEN-ELSE statements can be chained, but the final
statement must end with a semicolon. The chained IF-THEN-ELSE statement
is intended for situations where the conditions are not mutually exclusive. The
CASE statement more clearly expresses the same function as chained
mutually-exclusive IF-THEN-ELSE statements.

Chained IF-THEN-ELSE statements can provide multiway branching transition
logic. For example, multiple IF-THEN-ELSE statements can be chained to
describe a three-way branch in the following manner:

STATE SO:

IF (address < ~h0400)
THEN SO

ELSE

IF (address <= "hE100)
THEN S2

ELSE
S1;

Examples

if A==B then 2; "if A equals B goto state 2
if x-y then j else k; "if x-y is not 0 goto j, else goto k
if A then b*c; "if Ais true (non-zero) goto state b*c

ABEL-HDL Reference Manual 215

If-Then-Else

Chained IF-THEN-ELSE

if athen 1
else

if b then 2
else

if c then 3
else 0;

Nested IF-THEN-ELSE with Blocks

IF (Hold) THEN
{ IF ('{RESET) THEN Statel ;
IF (Error) THEN State2 ;

}
ELSE State3 ;

Nested IF-THEN-ELSE Statements

A complex state transition could be written with nested transitions in the
following manner:

STATE SO:
CASE (select == 1): IF (address == ~h0100)
THEN S16
ELSE
IF (address > “hE100)
THEN S17
ELSE
SO;
(select == 2): S2;
(select == 3): IF (address <= "*hE100)
THEN IF (reset)
THEN S3
ELSE SO;
ELSE S17;
(select == 0): SO;
ENDCASE;

See Also

State diagram
Case

Goto

With

ABEL-HDL Reference Manual 216

Interface (top-level)

Interface (top-level)

Syntax
module_name INTERFACE (input/set[=value] -> output/set :>
bidir/set
Purpose
The INTERFACE keyword declares lower-level modules and their ports
(signals) that are used in the current source. This declaration is used in
conjunction with a FUNCTIONAL_BLOCK declaration for each instantiation of
the module.
Use
module_name The name of the module being declared.
inputs- A list of signals in the lower-level module used in the
>outputs:>bidirs current source. Signal names are separated by
commas. Use -> and :> to indicate the direction of
each port of a functional block.
value An optional default value for an input that overrides
defaults in the lower-level module.
If the lower-level module uses the INTERFACE keyword to declare signals, the
upper-level source interface statement must exactly match the signal listing.
A CAUTION INTERFACE declarations cannot contain dot extensions. If
you need a specific dot extension across a source
boundary (to resolve feedback ambiguities, for example),
you must introduce an intermediate signal into the
lower-level module to provide the connection to the
higher-level source. All dot extension equations for a
given output signal must be located in the ABEL-HDL
module in which the signal is defined. No references to
the signal's dot extensions can be made outside of the
ABEL-HDL module.
|:| NOTE When you instantiate a lower-level module in an upper-level

source, any signal attributes (either explicit or implicit) are
inherited by the higher-level source signals that map to the
lower-level signals. Do not specify ISTYPES for instantiated
signals.

ABEL-HDL Reference Manual

217

Interface (top-level)

Examples

module top;
cnt4 interface (ce,ar,clk -> [g3..q0])

Map port names to signal names with equations. See “Functional_block.”

See Also

Functional_block
“Hierarchy in ABEL-HDL” in Chapter 2, Design Considerations”

ABEL-HDL Reference Manual 218

Interface (lower-level)

Interface (lower-level)

Syntax

Purpose

Use

MODULEmodule _name
INTERFACE (input/set [= port value]-> output/set [:>
bidir/set 1]);

The INTERFACE declaration is optional for lower-level modules. Use the
INTERFACE declaration in lower-level modules to assign a default port list and
input values for the module when instantiated in higher-level ABEL-HDL
sources. If you use the interface statement in an instantiated module, you
must declare the signals and sets in the upper-level source in the same order
and grouping as given in the INTERFACE statement in the lower-level module.
Interface (lower-level source).

Declaring signals in the lower-level module, although optional, does allow the
compiler to check for signal declaration mismatches and therefore reduces the
possibility of wiring errors.

module_name The standard module statement.

signal/set Signals or sets in the lower-level module used as
ports to higher-level sources. Use -> and :> to
indicate the direction of each port of a functional
block. Use commas to separate groups of signals

port_value The default value for the port for input signals only.
Default values do not apply to output and
bidirectional signals.

Declared Signals

Declared signals can be a list of lower-level pins, sets, or a combination of
both. The following constraints apply to the different signal types:

ABEL-HDL Reference Manual 219

Interface (lower-level)

Signal Type
Input

Output

Bidirectional

Constraints

Default values must be binary if applied to an

individual bit, or any positive integer applied to a set.

All inputs must be listed.

Unlisted outputs are interpreted as No connects

(NC). Unlisted, fed-back outputs are interpreted as

nodes in the upper-level source, following the
naming convention instance_name/node_name

Listing bidirectional signals is optional, except for
those with output enable (OE). If you specify

bidirectional signals, the compiler checks for invalid

wire connections.

A CAUTION

INTERFACE declarations cannot contain dot extensions. If
you need a specific dot extension across a source
boundary (to resolve feedback ambiguities, for example),
you must introduce an intermediate signal into the
lower-level module to provide the connection to the
higher-level source. All dot extension equations for a
given output signal must be located in the ABEL-HDL
module in which the signal is defined. No references to
the signal's dot extensions can be made outside of the
ABEL-HDL module.

[] NOTE

When you instantiate a lower-level module in a higher-level
source, any signal attributes (explicit or implicit) are inherited
by the higher-level source signals that map to the lower-level
signals. Do not specify ISTYPES for instantiated signals.

ABEL-HDL Reference Manual

220

Interface (lower-level)

Unlisted Signals

If you do not list some signals of the lower-level module in the interface
statement, the following rules apply:

Unlisted Pins Are: The Compiler Interprets Them As:

Inputs or Errors

Bidirectionals with

OE

Outputs No Connects (NC), and they can be removed
Feedback outputs Nodes in the upper-level source, following the

naming convention: instance_name/node_name

Examples

The following interface statement declares inputs ce, ar, and clk (giving default
values for two of them) and outputs g3 through q0.

module cnt4 interface (ce=1,ar=1,clk -> [g3..q0]) ;

Specifying default values allows you to instantiate cnt4 without declaring the
ce and ar inputs in the upper-level source. If you do not declare these inputs,
they are replaced with the constants 1 and 0, respectively. Since these
constants may affect optimization, you may need to re-optimize the lower-level
module with the constants.

|:| NOTE Supported default values are 1, 0, or X (don't care). You can
give default values for a set with a positive integer, and each
digit of the integer's binary form supplies the default value for
the corresponding signal in the set.

See Also

Interface (top-level)
Functional_block
“Hierarchy in ABEL-HDL” _in Chapter 2, Design Considerations”

ABEL-HDL Reference Manual 221

Istype _ Attribute Declarations

Istype _ Attribute Declarations

Syntax

Purpose

Use

signal [, signal ...][PIN|NODE [##s]] ISTYPE" attr
[, attr ..

The ISTYPE statement defines attributes (characteristics) of signals (pins and
nodes). You should use signal attributes to remove ambiguities in
architecture-independent designs. Even when a device has been specified,
using attributes ensures that the design operates consistently if the device is
changed later.

signal A pin or node identifier.

attr A string that specifies attributes for the signal(s).
Supported attributes are described below.

Signal attributes are specified with the ISTYPE statement, which can be
combined with pin or node declarations in a single declaration. The attributes
defined with ISTYPE specify the architectural constraints for signals that have
not been assigned to a specific device, pin, or node number, or a specified
device (and/or pin number) that has programmable characteristics.

All attributes listed on the right side of the ISTYPE statement are applied to
each signal specified on the left side.

Declarations of the pin and node names used in the ISTYPE statement must
be made before or with the ISTYPE statement.

Table 5-5 summarizes the available attributes.

A CAUTION If you do not specify signal attributes with Istype, the

compiler makes assumptions about signal attributes that
may or may not be what you intended.

See Also

.ext—Dot Extensions

ABEL-HDL Reference Manual 222

Istype _ Attribute Declarations

Table 5-5. Attributes

Dot Ext. Arch. Indep. Description
‘buffer’ No Inverter in Target Device.
‘collapse’ Collapse (remove) this signal.1
‘com’ Combinational output.
'dc’ O Unspecified logic is don't care.?
'invert’ Inverter in Target Device.
'keep’ Do not collapse this signal from equations.t
neg' Unspecified logic is 1.2
'pos'’ Unspecified logic is 0.2
'retain’ Do not minimize this output. Preserve redundant

product terms.3

'reg’ O Clocked Memory Element.
'reg_d' D Flip-flop Clocked Memory Element.
'reg_g' D Flip-flop Gated Clock Memory Element.
'reg_jk' JK Flip-flop Clocked Memory Element.
'reg_sr' SR Flip-flop Clocked Memory Element.
'reg_t' T Flip-flop Clocked Memory Element.
'xor' XOR Gate in Target Device.

Lif neither ‘keep' nor ‘collapse’ is specified, the optimization or fitter programs can keep or
collapse the signal as needed to optimize the circuit.

2The 'dc," 'neg,” and 'pos’ attributes are mutually exclusive.

3The 'retain’ attribute only controls optimization performed by ABEL-HDL Compile Logic. To
preserve redundant product terms, you must also specify no reduction for the Reduce Logic and

fitting (place and route) programs.

ABEL-HDL Reference Manual

223

Istype _ Attribute Declarations

" buffer '

"invert

The target architecture does not have an inverter between the
associated flip-flop (if any) and the actual output pin.

The target architecture has an inverter between the associated flip-
flop (if any) and the actual output pin.

Control of output inversion in devices is accomplished through the
use of the 'invert' or 'buffer' attributes. These attributes enforce the
existence ('invert') or non-existence (‘buffer’) of a hardware

inverter at the device pin associated with the output signal specified.

In registered devices, the 'invert' attribute ensures that an inverter is
located between the output pin and its associated register output.

[] ~NoTE

Ensuring an inverter is important for both pin-to-pin and
detailed design descriptions because the location of the
inverter affects a register's reset, preset, preload, and powerup
behavior as observed on the associated output pin.

' collapse

' keep'

'com

Collapse (remove) this combinational node. If neither 'keep' nor
‘collapse’ is specified, the compiler will keep or collapse the node for
best optimization. In the following example, signal b is given the
‘collapse’ attribute:

module coll_b

a,c,d,e pin;

b node istype ‘collapse’

equations

a=b&e;

b=cé&d;

end

The resulting equation collapses b out of the equations:

a=c&dé&e;

Do not collapse this combinational node from equations. In the
example under 'collapse,' b would be retained.

Specifies a combinational symbol.

ABEL-HDL Reference Manual 224

Istype _ Attribute Declarations

'dc,' 'neg,’ and 'pos’

These attributes control the value of unspecified logic in your
design, and are mutually exclusive. The values they specify are
shown below:

Istype Attribute Unspecified Logic is
'dc’ X (don't care)
'neg’ 1

'pos’ 0

The 'dc' attribute is equivalent to the @Dcset directive, except it
operates on signals instead of applying to a whole section.

D NOTE The'neg' or 'pos' attribute is implied if a device is specified. For
example, 'neg' is implied if the device output is inverted.

A CAUTION The @Dcset directive overrides 'dc,' 'neg," and 'pos'.

"reg’ The signal specified is a registered output. Equations, state
diagrams, and truth tables will generate logic for a D-type flip-flop,

normalized to take into account any inverters in the target device.

"reg_d The signal specified is a registered output. Equations, state
diagrams, and truth tables will generate logic for a D-type flip-flop,
but you must specify if the output is inverted in the target device
(with attribute 'invert' or 'buffer’).

‘reg_g'’ The signal specified is a registered output. Equations, state
diagrams, and truth tables will generate logic for a D-type flip-flop,
but you must specify if the output is inverted in the target device
(with attribute 'invert' or 'buffer’). Write equations and truth tables
using the .D and .CE dot extensions when you use this attribute.

ABEL-HDL Reference Manual 225

Istype _ Attribute Declarations

reg_jk

reg_sr

‘reg_t '

retain

xor

Examples

The signal specified is a JK-type registered output. State diagrams
generate logic for this register type, but you must specify if the
output is inverted in the target device (with attribute 'invert' or
‘buffer’). Write Equations and truth tables using the .J and .K dot
extensions when you use this attribute.

The signal specified is an SR-type registered output. State
diagrams will generate logic for this register type, but you must
specify if the output is inverted in the target device (with attribute
'invert' or 'buffer’). Write equations and truth tables using the .S and
.R dot extensions when you use this attribute.

The signal specified is a T-type registered output. State diagrams
will generate logic for this register type, but you must specify if the
output is inverted in the target device (with attribute 'invert' or
‘buffer’). Write equations and truth tables using the .T dot extension
when you use this attribute.

Do not minimize this output. Preserve redundant product terms for
the signal.

The signal specified will be implemented using an XOR gate fed by
two sum-of-products logic circuits. If you use XOR operators in the
design equations for this output (or if you use high-level operators
that result in XOR operations), then one XOR operator is retained
through optimization. Use this attribute if you are implementing your
design in an architecture featuring XOR gates.

FO, A istype 'invert, reg' ;

This declaration statement defines FO and A as inverted registered outputs.
You must define both FO and A earlier in the module. The following signal
declarations are all supported:

g3,92,91,0 NODE ISTYPE 'reg_SR;

Clk,a,b,c PIN 1,2,3,4;
reset PIN;
reset ISTYPE 'com’;
Output PIN 15 ISTYPE 'reg,invert’,
See Also
.ext
Pin
Node
“Dot Extensions” , “Attribute Assignment” , and “XOR Factors” in

Chapter 1, Language Structure”

ABEL-HDL Reference Manual 226

Library

Library

Syntax

Purpose

Use

See Also

LIBRARY ' namé ;

The LIBRARY statement causes the contents of the indicated file to be
inserted in the ABEL-HDL source file. The insertion begins at the LIBRARY
statement.

name A string that specifies the name of the library file,
excluding the file extension.

The file extension of ".inc' is appended to the name specified, and the
resulting file name is searched for. If no file is found, the abel5lib.inc library
file is searched.

Module
@Include

ABEL-HDL Reference Manual 227

Macro

Macro

Syntax

Purpose

Use

macro_id MACRO [(dummy_arg [, dummy arg]...)]{ block }

The MACRO declaration statement defines a macro. Macros are used to
include ABEL-HDL code in a source file without typing or copying the code
everywhere it is needed.

macro_id An identifier naming the macro.
dummy_arg A dummy argument.
block A block.

A macro is defined once in the declarations section of a module and then used
anywhere within the module as frequently as needed. Macros can be used
only within the module in which they are declared.

Wherever the macro_id occurs, the text in the block associated with that macro
is substituted. With the exception of dummy arguments, all text in the block
(including spaces and end-of-lines) is substituted exactly as it appears in the
block.

When debugging your source file, you can use the -list expand option to
examine macro statements. The -list expand option causes the parsed and
expanded source code (and the macros and directives that caused code to be
added to the source) to be written to the listing file.

Macros and Declared Equations

Use declared equations for constant expressions (instead of macros) for
faster processing. The file, mac.abl , in Figure 5-11 demonstrates the
difference:

ABEL-HDL Reference Manual 228

Macro

module mac
title 'Demonstrates difference between MACRO and declared equations'
mac device 'P16H8;
AB,C pin1,23;
X1,X2,X3 pin 14,15,16 istype ‘com’;
Y1 macro {B # C};
Y2=B#C;

equations
X1=A&Y1;
X2 =A&(Y1);
X3=A&Y2;

/I Note: Because Y1 is a text replacement macro the
Il equation for X1 will expand to A & B # C. If the

/I desired function was A & (B # C) use parentheses

// around the macro or use a subexpression (Y1=B#C)
/Il instead of the macro in the declarations.

/I The macro could also be written Y1 macro {(B # C)};

test vectors ([A,B,C] -> [X1,X2,X3])
[0,0,0]->[0, 0, O];
[0,0,1] ->[1, 0, O];
[0,1,0] ->[0, 0, O];
[0,1,1] ->[1, 0, O];
[1,0,0]->[0, 0, O];
[1,0,1] ->[1, 1, 1];
[1,1,0] ->[1, 1, 1];
[1,1,1]->[1, 1, 1];

end

Figure 5-11. Differences Between MACRO and Declared Equations

ABEL-HDL Reference Manual

229

Macro

Examples

The dummy arguments used in the MACRO declaration allow different actual
arguments to be used each time the macro is referenced. Dummy arguments
are preceded by a “?” to indicate that an actual argument is substituted for the
dummy by the compiler.

The equation,
NAND3 MACRO (A,B,C) { (?A & ?B & ?C) } ;

declares a macro named NAND3 with the dummy arguments A, B, and C. The
macro defines a three-input NAND gate. When the macro identifier occurs in
the source, actual arguments for A, B, and C are supplied.

For example, the equation
D = NAND3 (Clock,Hello,Busy) ;

brings the text in the block associated with NAND3 into the code, with Clock
substituted for ?A, Hello for ?B, and Busy for ?C.
This results in:

D =!(Clock & Hello & Busy) ;
which is the three-input NAND.

The macro NAND3 has been specified by a Boolean equation, but it could
have been specified using another ABEL-HDL construct, such as the truth
table shown here:

NAND3 MACRO (A,B,C)Y)

{ TRUTH_TABLE ([?A,?B ,?C]->?Y)
[0, X,X]->1;
[X.,0,X]->1;
[X.,.X.,0]->1;
[1!111]_> 01}’

In this case, the line,
NAND3 (Clock,Hello,Busy,D)

causes the text,

TRUTH_TABLE ([Clock,Hello,Busy] -> D)
[0, X, X.]->1;
[.X., 0, X.]->1;
[X., . X.,0]->1;
[1,1,1]->0;

to be substituted into the code. This text is a truth table definition of D,
specified as the function of three inputs, Clock, Hello, and Busy. This is the
same function as that given by the Boolean equation above. The truth table
format is discussed under TRUTH_TABLE.

ABEL-HDL Reference Manual 230

Macro

See Also

Other examples of macros:

"macro with no dummy arguments
nodum macro {W =S1& S2 & S3; };

onedum MACRO (d) {!?d } ; "macro with 1 dummy argument
and when macros are called in logic descriptions:

nodum
X =W + onedum(inp) ;
Y =W + onedum()C ; "note the blank actual argument

resulting in:

"note leading space from block in nodum
W=S1&S2&S3;

X=W+!linp;

Y=W+!C;

Recursive macro references (when a macro definition refers to itself) are not
supported, and the compiler halts abnormally. If errors appear after the first
use of a macro and the errors cannot be easily explained otherwise, check for
a recursive macro reference by examining the listing file.

= (Constant Declarations)
“Arguments and Argument Substitution” in

Chapter 1, Language Structure”

ABEL-HDL Reference Manual 231

Module

Module

Syntax

Purpose

Use

Examples

See Also

MODULEmodname[(dummy_arg [, dummy arg]...)]

The MODULE statement defines the beginning of a module and must be
paired with an END statement that defines the module's end.

modname An identifier naming the module.
dummy_arg Dummy arguments.

The optional dummy arguments allow actual arguments to be passed to the
module when it is processed. The dummy argument provides a name to refer
to within the module. Anywhere in the module where a dummy argument is
found preceded by a “?”, the actual argument value is substituted.

MODULE MY_EXAMPLE (A,B)

.C=’?B+’?A

In the module named MY_EXAMPLE, C takes on the value of “A + B” where A
and B contain actual arguments passed to the module when the language
processor is invoked.

Title

Interface (submodule)

End

“Arguments and Argument Substitution” in
Chapter 1, Language Structure”

ABEL-HDL Reference Manual 232

Node

Node
Syntax
['l node_ id [l node_id ..] NODE [node# [,node#]] [ISTYPE
' attributes 1;
Purpose
The NODE keyword declares signals assigned to buried nodes.
Use
node_id An identifier used for reference to a node in a logic
design.
node# The node number on the real device.
attributes A string that specifies node attributes for devices

with programmable nodes. Any number of attributes
can be listed, separated by commas. Attributes are
listed in Table 1-9 under “Attribute Assignment” in
Chapter 1, “Language Structure.”

D NOTE Using the Node keyword does not restrict a signal to a buried
node. A signal declared with NODE can be assigned to a
device 1/O pin by a device fitter.

You can use the range operator (..) to declare sets of nodes. The ending
semicolon is required after each declaration.

When lists of node_id and node # are used in one node declaration, there is a
one-to-one correspondence between the identifiers and numbers.

The following example declares three nodes A, B, and C.
A, B, C NODE ;

The node attribute string, Istype " attributes ,' should be used to specify node
attributes. Since a node declaration is only required in a detailed description,
use detailed attributes, not pin-to-pin attributes. The ISTYPE statement and
attributes are discussed under Istype.

The node declaration,
B NODE istype 'reg';

specifies that node B is a buried flip-flop.

ABEL-HDL Reference Manual 233

Node

Example
a0..a3 node 22..25;

assigns a0, al, a2 and a3 to nodes 22, 23, 24 and 25, respectively.

See Also
Istype
Pin
Module Attribute Assignment
“Attribute Assignment” in Chapter 1, Language Structure”

ABEL-HDL Reference Manual 234

Pin

Pin

Syntax

Purpose

Use

[l pin_id [['] pin_id ..] PIN [pin# [, pin#]][ISTYPE
tattr '],

The PIN keyword declares input and output signals that must be available on a
device 1/O pin.

pin_id An identifier that refers to a pin in a module.
pin# The pin number on the physical device.
attr A string that specifies pin attributes for devices with

programmable pins. Attributes are listed in ISTYPE.

When lists of pin_ids and pin#s are used in a pin declaration statement, there
IS a one-to-one correspondence between the identifiers and numbers given.
There must be one pin number associated with each identifier listed.

You can use the range operator (..) to declare sets of pins. The ending
semicolon is required after each declaration.

D NOTE Assigning pin numbers defines the particular pin-outs

necessary for the design. Pin numbers only limit the device
selection to a minimum number of input and output pins. Pin
number assignments can be changed later by a fitter.

The ! operator in pin declarations indicates that the pin is active-low, and is
automatically negated when the source file is compiled.

The pin attribute string, Istype " attributes ,' should be used to specify pin
attributes. The ISTYPE statement and attributes are discussed under Istype.
Istype attribute statements are recommended for all pins.

ABEL-HDL Reference Manual 235

Pin

Examples
Clock, 'Reset, S1 PIN 1,15,3;
Clock is assigned to pin 1, Reset to pin 15, and S1 to pin 3.
a0..a3 PIN 2..5 istype 'reg,buffer’;
Assigns a0, al, a2 and a3 to pins 2, 3, 4 and 5, respectively.

See Also

Istype
Node

Module

ABEL-HDL Reference Manual 236

Property

Property
Syntax
property _id PROPERTY 'string’ ;
Purpose
The PROPERTY declaration statement allows you to specify additional design
information associated with an external processing module (such as a device
kit).
Refer to the ispDesignExpert User Manual _ for more information on
Properties of ispDesignExpert.
Use
property _id Identifies properties relevant to specific external
modules, such as fitters.
string Argument containing the actual property data.
A CAUTION Property IDs and strings can be case-sensitive.
A CAUTION Property Information will not be present in
pre-route/functional simulation. Consider using
schematics to access property features that affect
simulation.
Example

PLSI property 'SCP N1 PATH_1",
PLSI property 'ECP N2 PATH_1';

ABEL-HDL Reference Manual 237

State (Declaration)

State (Declaration)

Syntax

Purpose

Use

See Also

state id [, state id ..] STATE][IN statereg_id];

The STATE declaration is made to declare a symbolic state name and,
optionally, associate it with a state register.

state_id A symbolic state name to be referenced in a
symbolic state description.

Statereg_id An identifier for a state register.
If your design includes more than one symbolic state machine, use the IN
keyword to associate each state with the corresponding state register.

Each state you declare corresponds to one flip-flop in a one-hot machine.

Async_reset

State_register

Sync_reset

“Symbolic State Declarations” and_“Using Symbolic State Descriptions”
in Chapter 2, Design Considerations”

ABEL-HDL Reference Manual 238

State (in State_diagram)

State (in State_diagram)

Syntax

Purpose

Use

See Also

[STATE state exp :[equation |
[equation |

trans_stmt ;..

The STATE keyword and the associated section describes one state of a state
diagram. It includes a state value (or a symbolic state name), a state transition
statement, and optional state output equations.

State_exp An expression, value, or symbolic state name giving
the current state.

equation An equation that defines the state machine outputs.

trans_stmt IF-THEN-ELSE, CASE, or GOTO statements,

optionally followed by WITH transition equations.

The specification of a state description requires the use of the state_diagram
syntax (which defines the state machine) and the IF-THEN-ELSE, CASE,
GOTO, and WITH statements (which determine the operation of the state
machine). Symbolic state machines (machines for which the actual state
registers and state values are unspecified) require additional declarations for

the symbolic state register and state names. See
“‘Symbolic State Declarations” on page 52.

A semicolon is required after each transition statement.

Async_reset State_diagram

Case Sync_reset

@Dcset Truth_table

Equations With

Goto Chapter 2, Design Considerations”
If-then-else

Module

State

ABEL-HDL Reference Manual 239

State diagram

State diagram

Syntax

Purpose

Use

STATE_DIAGRAMSstate reg
[-> state out]
[STATE state exp :[equation]
[equation]

trans_stmt ;..

The state description describes the operation of a sequential state machine
implemented with programmable logic.

State_reg An identifier or set of identifiers specifying the
signals that determine the current state of the
machine. For symbolic state diagrams, this identifier
is a symbolic state register name that has been
declared with a State_register declaration.

State out An identifier or set of identifiers that determines the
next state of the machine (for designs with external
registers).

State_exp An expression or symbolic state name giving the
current state.

equation An equation that defines the state machine outputs.

trans_stmt IF-THEN-ELSE, CASE, or GOTO statements,

optionally followed by WITH transition equations.

A semicolon is required after each transition statement.

Use state_diagram syntax to define a state machine, and the IF-THEN-ELSE,
CASE, GOTO, and WITH statements to determine the operation of the state
machine. Symbolic state machines (machines for which the actual state
registers and state values are unspecified) require additional declarations for
the symbolic state register and state names (see

“‘Symbolic State Declarations” on page 52).

The syntax for the IF-THEN-ELSE, CASE, GOTO, WITH, SYNC_RESET, and
ASYNC_RESET statements are presented here briefly and are discussed
further in their respective sections.

ABEL-HDL Reference Manual 240

State diagram

A state machine starts in one of the states defined by state_exp. The
equations listed after that state are evaluated, and the transition statement
(trans_stmit) is evaluated after the next clock, causing the machine to advance
to the next state.

Equations associated with a state are optional; however, each state must have
a transition statement. If none of the transition conditions for a state is met, the
next state is undefined. (For some devices, undefined state transitions cause
a transition to the cleared register state.)

Transition Statements

Transition statements describe the conditions that cause transition from one
state to the next. Each state in a state diagram must contain at least one
transition statement. Transition statements can consist of GOTO statements,
IF-THEN-ELSE conditional statements, CASE statements, or combinations of
these different statements.

GOTO Syntax
GOTOstate_exp

The GOTO statement unconditionally jumps to a different state. When GOTO
is used, it is the only transition for the current state. Example:

STATE SO0:
GOTO S1; "unconditional branch to state S1

CASE Syntax

CASE expression . state exp
[expression : state exp ;]...
ENDCASE ;

The CASE statement is used to list a sequence of mutually-exclusive transition
conditions and corresponding next states. Example:

STATE SO:
CASE (sel == 0): SO ;
(sel==1): S1;
ENDCASE

CASE statement conditions must be mutually exclusive. No two transition
conditions can be true at the same time, or the resulting next state is
unpredictable.

IF-THEN-ELSE Syntax

IF expression THEN state _exp
[ELSE state exp];

IF-THEN-ELSE statements specify mutually-exclusive transition conditions.

ABEL-HDL Reference Manual 241

State diagram

Example:

STATE SO:
IF (address > “hE100) THEN S1 ELSE S2,;

You can use blocks in IF-THEN-ELSE statements, for example,

IF (Hold) THEN Statel WITH {01 := ol.fb; 02 := 02.fb;}
ELSE State2;

The ELSE clause is optional. A sequence of IF-THEN statements with no
ELSE clauses is equivalent to a sequence of CASE statements.
IF-THEN-ELSE statements can be chained and nested. See “If-Then-Else”
for more information.

WITH Syntax

state_exp WITH equation
[equation ;]

You can use the WITH statement in any of the above transition statements (the
GOTO, IF-THEN-ELSE, or CASE statements) in place of a simple state
expression. For example, to specify that a set of registered outputs are to
contain a specific value after one particular transition, specify the equation
using a WITH statement similar to the one shown below:

STATE SO:
IF (reset)
THEN S9 WITH {
ErrorFlag := 1;
ErrorAddress := address;

}
ELSE

IF (address <= *hE100)
THEN S2

ELSE
SO;

The WITH statement is also useful when you describe output behavior for
registered outputs (since registered outputs written only for a current state
would lag by one clock cycle).

SYNC_RESET and ASYNC_RESET Syntax

In symbolic state descriptions the SYNC_RESET and ASYNC_RESET
statements are used to specify synchronous or asynchronous state machine
reset logic in terms of symbolic states. For example, to specify that a state
machine must asynchronously reset to state Start when the Reset input is
true, you would write

ASYNC_RESET Start : Reset ;

See “Symbolic State Declarations” on page 52 and “State Machines” on
page 90.

ABEL-HDL Reference Manual 242

State diagram

State Descriptions and Pin-to-pin Descriptions

Sequential circuits described with ABEL-HDL's state diagram language are
normally written with a pin-to-pin behavior in mind, regardless of the flip-flop
type specified.

The state machine shown below operates the same (in terms of the behavior
seen on its outputs) no matter what type of register is substituted for 'reg’ in the
signal declarations. To allow this flexibility, the specification of 'buffer' or ‘invert'
is required when a state diagram is written for a register type other than 'reg.

module statema

title 'State machine example’;
clock,hold,reset pin;
P1,PO pin istype 'reg,buffer’
C=.c,

equations
[P1,PO].clk = clock;
[P1,P0O].ar =reset;

" state declarations...
declarations
statema = [P1,P0];

stateA =10,0];
stateB =[1,0];
stateC =[1,1];
stateD =[0,1];

state_diagram statema
state stateA:
goto stateB,;
state stateB:
goto stateC,
state stateC:
goto stateD;
state stateD:
goto stateA,
"test_vectors edited
end

Figure 5-12. Architecture-independent State Machine

ABEL-HDL Reference Manual 243

State diagram

See Also

Async_reset
Case

@Dcset
Equations
Goto
If-then-else
Module

State
State_register
Sync_reset
Truth_table
With
“Symbolic State Declarations”

ABEL-HDL Reference Manual

in Chapter 1, Language Structure”

244

State register

State_register

Syntax
statereg i d STATE_REGISTER;
Purpose
For symbolic state diagrams, the STATE_REGISTER is used to declare a
symbolic state machine name.
Use
Statereg_id An identifier naming the state register.
See Also
State
State_diagram
“Symbolic State Declarations” in Chapter 1, Language Structure”
“Using Symbolic State Descriptions” in

Chapter 2, Design Considerations”

ABEL-HDL Reference Manual 245

Sync_reset

Sync_reset
See Async_reset .

ABEL-HDL Reference Manual 246

Test vectors

Test _vectors
Syntax

Purpose

Use

TEST_VECTORS |[note |
(input [, input]...-> output [, output 1]...)

[invalues -> outvalues ;]

TEST_VECTORS specify the expected functional operation of a logic device
by explicitly defining the device outputs as functions of the inputs.

note An optional string that describes the test vectors.

inputs An identifier or set of identifiers specifying the
names of the input signals, or feedback output
signals.

outputs An identifier or set of identifiers specifying the output
signals.

invalues An input value or set of input values.

outvalues A pin-to-pin output value or set of output values

resulting from the given inputs.

Test vectors are used for simulation of an internal model of the device and
functional testing of the design and device. The number of test vectors is
unlimited.

The format of the test vectors is determined by the header. Each vector is
specified in the format described within the parentheses in the header
statement. An optional note string can be specified in the header to describe
what the vectors test, and is included as output in the simulation output file, the
document output file, and the JEDEC programmer load file.

The table lists input combinations and their resulting outputs. All or some of
the possible input combinations can be listed. All values specified in the table
must be constants, either declared, numeric, or a special constant (for
example, .X. and .C.). Each line of the table (each input/output listing) must
end with a semicolon. Test vector output values always represent the
pin-to-pin value for the output signals.

ABEL-HDL Reference Manual 247

Test vectors

Test vectors must be sequential for state machines. Test vectors must go
through valid state transitions.

The TRACE keyword can be used to control simulator output from within the
source file.

Functional testing of the physical device is performed by a logic programmer
after a device has been programmed. The test vectors become part of the
programmer load file.

Examples

Following is a simple test vectors section:

TEST_VECTORS
([AB]->[C,D])

[0,0] ->[1,1];
[0,1] ->[1,0] ;
[1,0] ->[0,1] ;
[1,1] ->[0,0];

The following test vectors are equivalent to those specified above because
values for sets can be specified with numeric constants.

TEST_VECTORS
([AB]->[C,D])

->
->
->
> 0

wWwiNEFk O
=N W

If the signal identifiers in the test vector header are declared as active-low in
the declaration section, then constant values specified in the test vectors are
inverted accordingly (interpreted pin-to-pin).

See Also

Module
Trace

ABEL-HDL Reference Manual 248

Title

Title

Syntax
TITLE' string

Purpose
The TITLE statement gives a module a title that appears as a header in both
the programmer load file and documentation file created by the language
processor.

Use
The title is specified in the string following the TITLE keyword. The string is
opened and closed by an apostrophe and is limited to 324 characters.
The TITLE statement is optional.
Asterisks in the title string do not appear in the programmer load file header in
order to conform with the JEDEC standard.

Examples
An example of a TITLE statement that spans two lines and describes the
logic design is shown below:
module m6809a
title '6809 memory decode
Jean Designer’

See Also

Module

ABEL-HDL Reference Manual 249

Trace

Trace

Syntax
TRACE (inputs -> outputs) ;
Purpose

The TRACE statement controls which inputs and outputs are displayed in the
simulation output.

Use

TRACE statements can be placed before a test vector section or embedded
within a sequence of test vectors.

Examples

TRACE ([AB]->[C 1);
TEST_VECTORS ([A,B] -> [C,D])
0 > 3 ;
1 > 2 ;
TRACE ([A,B] -> [D]);
2 > 1 ;
3 >0 ;

See Also

Test_vectors

ABEL-HDL Reference Manual 250

Truth_table

Truth_table
Syntax

Purpose

Use

TRUTH_TABLE (in_ids -> out_ids)
inputs -> outputs
or
TRUTH_TABLE (in_ids > reg ids)
inputs > reg outs ;
or
TRUTH_TABLE
(in_ids > reg ids -> out.ids)
inputs :> reg outs -> outputs

Truth tables specify outputs as functions of input combinations, in a tabular
form.

in_ids Input signal identifiers.

out_ids Output signal identifiers.

reg_ids Registered signal identifiers.

inputs The inputs to the logic function.

outputs The outputs from the logic function.
reg_outs The registered (clocked) outputs.

> > Indicates the input to output function for

combinational (->) and registered (:>) outputs.

Truth tables are another way to describe logic designs with ABEL-HDL and
may be used in lieu of (or in addition to) equations and state diagrams. A truth
table is specified with a header describing the format of the table and with the
table itself.

A semicolon is required after each line in the truth table.

The truth table header can have one of the three forms shown above,
depending on whether the device has registered or combinational outputs or
both.

The inputs and outputs (both registered and combinational) of a truth table are
either single signals, or (more frequently) sets of signals. If only one signal is
used as either the input or output, its name is specified. Sets of signals used
as inputs or outputs are specified in the normal set notation with the signals
surrounded by brackets and separated by commas (see “Sets” in

Chapter 1, Language Structure”).

ABEL-HDL Reference Manual 251

Truth_table

The syntax shown in the first form defines the format of a truth table with
simple combinational outputs. The values of the inputs determine the values
of the outputs.

The second form describes a format for a truth table with registered outputs.
The symbol “.” preceding the outputs distinguishes these outputs from the
combinational outputs. Again the values of the inputs determine the values of
the outputs, but now the outputs are registered or clocked: they will contain the
new value (as determined by the inputs) after the next clock pulse.

The third form is more complex, defining a table with both combinational and
registered outputs. It is important in this format to make sure the different
specification characters “-” and “:” are used for the different types of outputs.

Truth Table Format

The truth table is specified according to the form described within the
parentheses in the header. The truth table is a list of input combinations and
resulting outputs. All or some of the possible input combinations may be
listed.

All values specified in the table must be constants, either declared, numeric, or
the special constant .X . Each line of the table (each input/output listing) must
end with a semicolon.

The header defines the names of the inputs and outputs. The table defines
the values of inputs and the resulting output values.

Examples

This example shows a truth table description of a simple state machine with
four states and one output. The current state is described by signals A and B,
which are put into a set. The next state is described by the registered outputs
C and D, which are also collected into a set. The single combinational output
is signal E. The machine simply counts through the different states, driving the
output E low when A equals 1 and B equals 0.

TRUTH_TABLE ([A,B] :>[C,D]->E)
0O >1 ->1;
1 > 2 ->0;
2 > 3 >1;
3 >0 >1;

Note that the input and output combinations are specified by a single constant
value rather than by set notation. This is equivalent to:

[0,0] > [0,1] ->1;

[0,1] :=>[1,0] ->0;

[1,0] >[1,1]>1;

[1,1] :>[0,0] ->1;

ABEL-HDL Reference Manual 252

Truth_table

See Also

When writing truth tables in ABEL-HDL (particularly when describing
registered circuits), follow the same rules for dot extensions, attributes, and
pin-to-pin/detailed descriptions described earlier for writing equations. The
only difference between equations and truth tables is the ordering of the inputs
and outputs.

The following two fragments of source code, for example, are functionally
equivalent:

Fragment 1:
equations
g:=a & load # !g.fb & !load;

Fragment 2:

truth_table ([a,qg.fb,load] :> q)
[0,0,0]:>1,;
[0,1,0]:>0;
[1,0,0]>1,
[1,1,0]:>0;
0,0, 1]1:>0;
1,0, 1]:>1;
0,1, 1]:>0;
[1,1,1]>1;

As an example, the following truth table defines an exclusive-OR function with
two inputs (A and B), one enable (en), and one output (C):

TRUTH_TABLE ([en, A, B] > C)
[0,.X., X] -> X " don't care w/enab off

HI—‘OO
VVVV
OI—‘HO

— e —

0
1
0
1

PR PP

Module
Equations
State_diagram
@Dcset
ledl.abl
led7.abl

ABEL-HDL Reference Manual 253

Wait

Walit

Syntax

Use

WAIT < integer >;

This keyword presents the relative time delay which effects the test vectors
directly following the WAIT statement. It can be used in the MACRO block only
when this Macro is used in the Test_vectors block. The default time unit is
nano-second.

Example 1

TEST_VECTORS ([A,B]->[C])
[0,0]->.X;
WAIT 20;
[1,1]->.X,;

Signal A keeps 0 for 20ns, then changes to 1.

Example 2

TEST_VECTORS ([A,B]->[C])
[0,0]->.X.;

[1,1]->.X.;

WAIT 20; [0,0]->.X.;

Signal A appears 0 and changes to 1 at Ons, then keeps 1 until it changes to 0
at 20ns.

Example 3

See Also

TEST_VECTORS ([A,B]->[C]
[0,0]->.X.;
[1,1]->.X.;
[0,0]->.X.;

WAIT is not used in this example, the time interval is adjusted by the step size
specified in the Setup Simulator dialog box which can be accessed by
Simulate [0 Settings from the Simulator Control Panel. The default step size
is 1000*100ps. So signal A keeps 0 for 1000*100ps and changes to 1, then
changes to 0 after another 1000*100ps.

Test_vectors
Cycle
flicker.abl

ABEL-HDL Reference Manual 254

When-Then-Else

When-Then-Else

Syntax

Purpose

Use

[WHEN condition THEN][!] element =expression ;
[ELSE equation];
or
[WHEN condition THEN] equation; [ELSE equation 1|,

The WHEN-THEN-ELSE statement is used in equations to describe a logic
function.

condition Any valid expression.

element An identifier naming a signal or set of signals, or an
actual set, to which the value of the expression is
assigned.

expression Any valid expression.

= = ?=and ?:= Combinational and registered (pin-to-pin)

assignment operators.

Equations use the “Assignment Operators” = and ?= (combinational), and
= and ?:= (registered) described in Chapter 1, “Language Structure.”

The complement operator, “!”, expresses negative logic. The complement
operator precedes the signal name and implies that the expression on the right
of the equation is to be complemented before it is assigned to the signal.
Using the complement operator on the left side of equations is also supported;
equations for negative logic parts can just as easily be expressed by
complementing the expression on the right side of the equation.

A CAUTION WHEN-THEN-ELSE is only supported in equations. Use

IF-THEN-ELSE in STATE_DIAGRAM descriptions.

|:| NOTE Equation blocks in conditional expressions such as

WHEN-THEN result in logic functions that are logically ANDed
with the conditional expression that is in effect.

ABEL-HDL Reference Manual 255

When-Then-Else

Examples

WHEN (Mode == S_Data) THEN {Out_data := S _in;
S Vvalid :=1; }

ELSE WHEN (Mode == T_Data) THEN {Out_data := T_in;

T _Vald =1; }

See Also

“Equations” _in Chapter 1, Language Structure”

ABEL-HDL Reference Manual

256

With

With

Syntax

Purpose

Use

Examples

See Also

tfrans_stmt state_exp WITH equation
[equation]..;

The WITH statement is used in the STATE_DIAGRAM section. When used in
conjunction with the IF-THEN or CASE statement, it allows output equations to
be written in terms of transitions.

trans_stmt The IF-THEN-ELSE, GOTO, or CASE statement.
State_exp The next state.
equation An equation for state machine outputs.

You can use the WITH statement in any transition statement, in place of a
simple state expression.

The WITH statement is also useful when you are describing output behavior
for registered outputs, since registered outputs written only for a current state
would lag by one clock cycle.

To specify that a set of registered outputs should contain a specific value after
one particular transition, specify the equation using a WITH statement similar
to the one shown below:

STATE SO:
IF (reset) THEN S9 WITH { ErrorFlag := 1;
ErrorAddress := address;}
ELSE IF (address <="hE100)

THEN S2
ELSE SO;
State 5:
IFa==1thenl WITH{x:=1;
y:=0:}
ELSE2 WITH{x:=0;
y:=13}
State_diagram
Case
Goto
If-then-else

ABEL-HDL Reference Manual 257

XOR_factors

XOR_factors

Syntax
XOR_factors
signal name = xor_factors ;

Purpose
Use XOR_FACTORS to specify a Boolean expression to be factored out of
(and XORed with) the sum-of-products reduced equations. Factors can
dramatically reduce the reduced equations if you use a device featuring XOR
gates.

Use

XOR_FACTORS converts a sum of products (SOP) equation into an exclusive
OR (XOR) equation. The resulting equation contains the sum of product
functions that, when exclusive ORed together, have the same function as the
original. The XOR_FACTORS equation is divided into the original equation,
with the factor (or its complement) on one side of the XOR and the remainder
on the other.

After deciding the best xor_factors, remember to revise the source file to
use an XOR device for the final design.

D NOTE The assignment operator you use in XOR_FACTORS
equations must match the assignment operator in the
EQUATIONS section.

Examples

IQ16= A& B& ID
A& B&IC
B& C& D
#IA& C& D;

Reordering the product terms indicates that (A & B) and (C & D) are good
candidate factors, as shown below:

IQ16= A& B&(IC#!D)
#(A#B)& C& D;

ABEL-HDL Reference Manual 258

XOR_factors

If we process the following source file, the program reduces the equations

according to the XOR_Factors, A & B.

module xorfact
xorfact device 'P20X10";
Clkk,OE pin1,13;
AB,C.D pin23,4,5;
Q16 pin 16 istype 'reg,xor’;
XOR_Factors
Q16 :=A & B;
equations
Q16 = A& B& D
B& C& D
1A & C&D
A& B&IC;
end

Using A & B as the XOR_Factors, the reduced equations are

Q16 := (A& B) $ (C & D));

Example 2

The example octalf.abl uses a more complex high-level equation:

module OCTALF
title 'Octal counter with xor factoring.'

octalf device 'P20X8";
DO..D7 pin 3..10;

Q7..Q0 pin 15..22 istype 'reg,xor";
CLK,I0,11,0C,Carryln pin 1,2,11,13,23;

CarryOut pin 14 istype '‘com’
HLXZzC=1,0, .X,.Z,.C;

Data = [D7..DOJ;
Count = [Q7..QQ];

Mode =[I11,10];
Clear=10, 0];
Hold =0, 1];
Load =1, 0];
Inc =[1,1];

xor_factor

Count.FB := Count & 10;

" ..comments removed..

ABEL-HDL Reference Manual

259

XOR_factors

equations
Count := (Count.FB + 1) & (Mode == Inc) & ICarryln
(Count.FB) & (Mode ==Inc) & Carryln
(Count.FB) & (Mode == Hold)
(Data) & (Mode == Load)
(0) & (Mode == Clear);

ICarryOut = ICarryln & (Count.FB == *"hFF);

Count.C = CLK;

Count.OE =10C;
"..test vectors removed..
"..comments removed..
end OCTALF;

ABEL-HDL Reference Manual

260

.constant 19
.D 79,159
example 168
.D. 19
.ext
dot extension 158

F 19 -

T
vy}
~
=
a1
[<e]

— 0O
o
'_\
©|tn
7|

=
3

— xR
=
(o)
(]

|—
IImaQ
e
o1 |u1|on
© oo

.OE 159
example 168

P. 19

.PIN 79,80,159
assignment 235
istype 222
p|n keyword 235

using the range operator in 235

PR 159
example 168

.Q 79,159

R 159

.RE 159
example 168

.S 160

SET 160

.SP 160

.SR 160

Z. 19
@Alternate
directive 174
disabling 197
@Carry
directive 175
@Const
directive 176
@Dcset
directive 177
disabling 192
example 85
overrides dc, net, and pos 2
precautions 84
with state machines 94
@Dcstate
directive 178
@Directive 173
@Exit
directive 179
@Expr
directive 180
@If
directive 181
@Ifb
directive 182
@Ifdef 1 3
@Iflden 184
@Ifnb 185
@Ifndef 86
@lfniden 187
@Include 188
@Irp 189
@Irpc 190
@Message 191
@Onset 192
@Page 193
@Radix 194
@Repeat 195

ABEL-HDL Reference Manual

225

261

Index

@Setsize 196
@Standard 197
Ap 2

rd 2

" 22

2% 2

Numerics

12-to-4 multiplexer, example 114
3-state outputs 62

3-state sequencer, example 131
4-bit comparator, example 125

4-bit universal counter, example 118
7-segment display decoder, example 1

A
ABEL-HDL

introduction to 15

structure 43

syntax 15
Active levels for devices 76
Active-low declarations 74
actlowl.abl 75
actlow2.abl 74
Addition 25
Alternate flip-flop types 72
Ambiguities 67
AND

alternate operator for 174
Architecture independence

attributes 65

dot extensions 66

dot extensions, example 80

resolving ambiguities 67
Arguments

defining in module statement 232
Arithmetic operators 25
ASCII, supported characters 16
Assignment operators 28
Assignments

device 204

multiple, to same identifier 32

node 233

pin 235
Async_reset

keyword 198
Asynchronous preset 158
Attribute and polarity control 77
Attributes

‘buffer’ 224

‘collapse’ 224

‘com’ 224

'dc’ 225
'invert’ 224
'keep’ 224
'neg’ 225
'pos’ 225
reg_d’ 225

'xor' 226

architecture independence 65
collapsing nodes 64

in lower-level sources 62

inherited by higher-level sources 208
istype 222

B
Ap 2
Base numbers
binary, octal, hexadecimal, decimal 22
changing 194
bcd7.abl 130
Bidirectional 3-state buffer, example 122
Binary 22
binbcd.abl 140
bjack.abl 146
Blackjack machine 134
Blocks 19
Buffer 224
and polarity control 77
example 70
Buried nodes, declaring 233

C
Case
keyword 199
Chained if-then-else 215
Clock enable 159
Clocked memory element
istype reg 225
Clocked memory element, Istype 'reg’ 225
Closing a module 205
Collapse
attribute 224
Collapsing combinational nodes
istype ’collapse’ 224
istype 'keep’ 224
Collapsing nodes 64
selective 65

ABEL-HDL Reference Manual 262

Index

Com

attribute 224
Combinational nodes 62
Combinatorial device, attribute for 224
Comments 21
comp4a.abl 127
Complement operator 31
Constants

declarations 169

declared in macros 176

intermediate expressions 170
Counter

example 118

0

counter.abl 209

D
nd 22
D flip-flop
clocked memory element 225
dot extensions 161
gated clocked memory element 225
unsatisfied transition condition 92
Dangling nodes 62
Dc 225
attribute 225
dc.abl 85
Dc-set 84
and optimization 85
Decimal 22
Declarations
active-low 74
constants 169
device 204
fuses 211
keyword 203
macro 228
node 233
pin 235
signal 50
structure 46
Declared equations vs. macros 228
decode.abl 114
Default values
for lower-level source signals 217
supported values 221
Design considerations 60
Detail descriptions
designing for macrocells 68
example, dot extensions 83
example, inverting 70
example, non-inverting 70
when to use 72

detaill.abl 82
detail2.abl 83
Device
keyword 204
Device kits, passing information to 237
Devices
@radix 194
changing base numbering system 194
declaring fuse states 211
programmable polarity 76
Directives
@alternate 174
@carry 175
@const 176
@dcset 177
@dcstate 178
@exit 179
@expr 180
@if 181
@ifb 182
@ifdef 183
@ifiden 184
@ifnb 185
@ifndef 186
@ifniden 187
@include 188
@irp 189
@irpc 190
@message 191
@onset 192
@page 193
@repeat 195

@setsize 196

@standard 197
if blank 182
if defined 183
if identical 184
if not blank 185
if not defined 186
if not identical 187
Division 25
Don’t cares
@dcset 177
Dot extension example
detail 83
Dot extensions 158
.COM 79
.D 79
.ext 158
.FB 79
.PIN 79

Q79

ABEL-HDL Reference Manual 263

Index

and architecture independence,
example 80
and detail descriptions 82
and feedback 79
drawings of 167
example, detail 82
for flip-flop types 161
no 79
not allowed across sources 217
pin-to-pin 163
Dummy arguments
defining in module statement 232
E
Else
keyword 214
Emulation of flip-flop 87
End
keyword 205
Endcase 199
Equation polarity 77
Equations
keyword 206
overview 31
when-then-else 206, 255
XORs 86
Equations for flip-flops 78
Equations of XORs 86
Examples
12-to-4 multiplexer using equations 114
3-state sequencer, state machine 131
4-bit comparator, equations 125
4-bit universal counter 118
5-bit adder 134
7-segment display decoder, truth
tables 128
adder 134

bidirectional 3-state buffer, equations 122

binary to BCD converter 134
blackjack machine, state machine 134
memory address decoder, equations 112
multiplexer 134

Expressions 29
directive for 180

F
Factors, XOR 258
Feedback
and dot extensions 79
merging 64
referencing across sources 217

Files
including in source file 227
Files, including in source file 188
Flip-flops 93
and dot extensions 78,79
detail descriptions 72
D-type 92
emulations with XORs 87
state diagrams 73
using for alternative flip-flop types 72
Form feed 193
Functional block
keyword 208
Fuses
keyword 211

G
Gated clock D flip-flop, dot extensions 161
Goto
keyword 213
Greater than 25

H

Ah 2

Header 46,249

Hexadecimal 22

Hierarchy 61

Hierarchy declarations
creating multiple instances of a

source 208

functional_block 208
inheriting attributes 208
interface (lower-level) 219
interface (top-level source) 217
overriding default values 210
supported default values 221
unlisted pins 221
unused outputs 210
wiring lower-level signals 209

|

Identifiers 16
choosing 18
in state machines 90
multiple assignments to 32
reserved 18

If blank 182

If defined 183

If identical 184

If not blank 185

If not defined 186

If not identical 187

ABEL-HDL Reference Manual 264

Index

If-then-else
keyword 214
lllegal state in state machines 93
Include files 227
Indefinite repeat 189
character 190
Input pin 235
Instantiation 61
interface (lower-level) 219
interface (top-level) 217
of lower-level source 61,208
Interface (lower-level)
keyword 219
Interface (top-level)
keyword 217
Interface, submodule 61
Intermediate expressions 170
Invert
attribute 224
example 70
Inverter
polarity control 77
Inverting outputs, attribute for 224
Istype and polarity control 77
Istype, keyword 222

J

JK flip-flop
clocked memory element 226
dot extensions 161
emulation of 88

JK flip-flops 73

K
Keep
attribute 224
Keywords
async_reset 198
case 199
declarations 203
device 204
end 205
equations 206
functional_block 208
fuses 211
goto 213
if-then-else 214
interface (lower-level source) 219
interface (top-level source) 217
istype 222
library 227
macro 228

module 232

node 233

pin 235

property 237

state (declaration) 238
state (in state_diagram) 239
state_diagram 240
state_register 245
sync_reset 198
test_vectors 247

title 249

trace 250

truth_table 251
when-then-else 255
with 257

XOR_factors 258

L
Latch-enable 158
Less than 26
Library
keyword 227
Linking modules 64
merging feedbacks 64
post-linked optimization 64
Logic descriptions 53
Lower-level sources 61
instantiating 208
L-type latch, dot extensions 161
M
mac.abl 229
Macro
keyword 228
keyword example 229
Macros
vs. declared equations 228
Memory address decoder
example 112
Merging feedbacks 64
Minus 25
Module
beginning 232
defined 46
ending 205
keyword 232
Modulus 25
Multiplication 25
mux12t4.abl 117
muxadd.abl 138

ABEL-HDL Reference Manual 265

Index

N
Neg 225
attribute 225

No connects, in hierarchy declarations 21

No dot extension 79
Node
collapsing 64
combinational 62
dangling 62
istype 222
keyword 233
registered 62
removing redundant 63
selective collapsing 65
using the range operator in 233
Non-inverting outputs
attribute for 224
NOT 25
alternate operator for 174
Numbers 22
changing base 194

O
%) 2
Octal 22
octalf.abl 259
Off-set 84
One-bit changes 98
On-set 84
Operators
alternate set of 174
arithmetic 25
assignment 28
complement 31
logic 25
overview 24
priority 29,30
relational 26
standard set 197
Optimization
and @dcset 88
of XORs 86
post-linked 64
reducing product terms 98
Optimization and @dcset 85
Optimization of XORs 86
OR 25
alternate operator for 174
Other flip-flops 93
Output enables 62
Output pin 235
Outputs, using istype for 222

P
Pin
assignments 235
istype 222
keyword 235
using the range operator in 235
pin2pin.abl 81
Pin-to-pin descriptions
example 69

6,67

Pin-to-pin descriptions and flip-flops 78

Plus 25
Polarity control 76,77

active levels 76,77

istype 77
Ports, declaring lower-level 61,63
Pos

attribute 225
Post-linked optimization 64
Powerup register states 92
Powerup state 92
Preset

built-in, example 71
Priority of operators 29
Product terms

reducing 98

reducing with intermediate

expressions 170

Programmable polarity, active levels for

devices 76
Property
keyword 237

Q

Q11.abl
Ql2.abl 7
Q13.abl 7
Q15.abl
Q17.abl

SIS

o

\l

1

N

R
Range operators
example 119
in hierarchy declarations 208
in node declarations 233
in pin declarations 235
using 119
Reduction, XOR_factors 258
Redundant nodes 63

Redundant product terms, retaining 226

Reg
attribute 225

ABEL-HDL Reference Manual

266

Index

Reg_ d
attribute 225
Reg_g
attribute 22
Reg_jk 226
attribute
Reg_sr
attribute
Reg_t
attribute 226
Register load input 159
Registered design descriptions 66
Registered nodes 62
Registers
bit values in state machines 99
cleared state in state machines 93
dot extensions 158,161
powerup states 92
Relational operators 26
Repeat
@irp directive 189
@irpc directive 190
Reset
example, inverted architecture 72

226
226

example, non-inverted architecture 71

resolving ambiguities 71
Retain
attribute 226

S
Selective collapsing 65
sequence.abl 91,133
Set 37
Set operations 34
Sets 33,118
assignment and comparison 35
evaluation of 37
indexing 33
limitations 39
using to create modes 118
Shift 25

pin 235
Simulation
test_vectors 247
trace keyword 250
Source files
beginning 232
declarations 46
design considerations 60
directives 59

header 46
logic descriptions 53
structure of 43
test vectors 58
Special constants 19
SR flip-flop 73
clocked memory element 226
dot extensions 161
State
declarations 238
in descriptions 239
keyword 238
State (in State_diagram)
keyword 239
State machine example 91,243
@dcset 96
3-state sequencer 131
blackjack machine 134
no @dcset 94
State machines
and @dcset 86, 94
case keyword 199
cleared register state 93
design considerations 90
goto 213
identifiers in 90
identifying states 99
if-then-else 214
illegal states 93
powerup register states 92
reducing product terms 98
state (in state_diagram) 239
state_diagram 240
test vectors for 248
transition statements 241
using state register outputs 99
with 257
State registers 99
State diagram
keyword 240
State_diagram, @dcstate 178
State_register
keyword 245
statema.abl 243
Subtraction 25
Sume-of-products, XOR_factors 258
Symbolic state descriptions 99
specifying reset logic 198
Sync_reset
keyword 198
Synchronous preset 160
Syntax 15

ABEL-HDL Reference Manual 267

Index

T
T flip-flop
and equations 78
clocked memory element 226
dot extensions 161
Tabular truth table 251
Test vectors
test_vectors keyword 247
trace keyword 250
Test_vectors
keyword 247
Then
keyword 2
Times 25
Title
keyword 249
Trace
keyword 250
traffic.abl 94
trafficl.abl 96
Transferring designs 65
Transition conditions 92
Transition statements 241
Transitions
case keyword 199
if-then-else keyword 214
Truth tables
7-segment display decoder example 1
truth_table keyword 251
Truth_table
keyword 251
tsbuffer.abl 124

U
unicnt.abl 118
Unlisted pins
in hierarchy declarations 221
Unspecified logic values
istype dc|pos|neg 225

W

When-then-else 206
keyword 255

With
keyword 257

X
x1.abl 86
x2.abl 87
XNOR
alternate operator for 174

128

XOR
alternate operator for 174
attribute for 226
XOR_Factors
example 259
summary 57
XOR_factors
keyword 258
xorfact.abl 259
XORs
and operator priority 87
equations 86
example 86,87
flip-flop emulation 87
implied in equations 87
optimization of 86

ABEL-HDL Reference Manual 268

	Table of Contents
	Preface
	What is in this Manual
	Where to Look for Information

	Documentation Conventions
	Related Documentation

	Chapter 1 Language Structure
	Summary
	Introduction to ABEL-HDL
	Basic Syntax
	Supported ASCII Characters
	Identifiers
	Reserved Identifiers (Keywords)
	Choosing Identifiers

	Constants
	Blocks
	Using Blocks in Logic Descriptions
	Using Blocks for State Diagram Transitions

	Comments
	Numbers
	Strings
	Operators, Expressions, and Equations
	Logical Operators
	Arithmetic Operators
	Relational Operators
	Assignment Operators
	Expressions
	Equations
	Equation Blocks

	Sets
	Set Indexing
	Set Operations
	Set Assignment and Comparison
	Set Evaluation
	Example Equations
	Set Operation Rules
	Limitations/ Restrictions on Sets

	Arguments and Argument Substitution
	Spaces in Arguments
	Argument Guidelines

	Basic Structure
	Header
	Declarations
	Logic Description
	Test Vectors Section
	End Statement
	Other Elements

	Header
	Module
	Interface
	Title

	Declarations
	Declarations Keyword
	Device Declaration
	Hierarchy Declarations
	Interface Declarations
	Functional_block Statement
	Example of Functional Block Instantiation

	Signal Declarations
	Pin Declarations
	Node Declarations
	Attribute Assignment

	Constant Declarations
	Symbolic State Declarations
	State_register Declarations
	State Declarations

	Macro Declarations
	Library Declaration

	Logic Description
	Dot Extensions
	Equations
	Truth Tables
	State Descriptions
	Fuse Declarations
	XOR Factors

	Test Vectors Section
	Test Vectors
	Trace Statement

	End Statement
	Other Elements
	Directives

	Chapter 2 Design Considerations
	Hierarchy in ABEL-HDL
	Instantiating a Lower-level Module in an ABEL-HDL Source
	Identifying I/O Ports in the Lower-level Module
	Specifying Signal Attributes
	Output Enables (OE)
	Buried Nodes
	Declaring Lower-level Modules in the Top-level Source
	Instantiating Lower-level Modules in Top-level Source

	Hierarchy and Retargeting and Fitting
	Redundant Nodes

	Merging Feedbacks
	Post-linked Optimization

	Node Collapsing
	Selective Collapsing

	Pin-to-pin Language Features
	Device-independence vs. Architecture-independence
	Signal Attributes
	Signal Dot Extensions

	Pin-to-pin vs. Detailed Descriptions for Registered Designs
	Using := for Pin-to-pin Descriptions
	Resolving Ambiguities

	Detailed Circuit Descriptions
	Detailed Descriptions: Designing for Macrocells

	Examples of Pin-to-pin and Detailed Descriptions
	Pin-to-pin Module Description
	Detailed Module Description

	Detailed Module with Inverted Outputs
	When to Use Detailed Descriptions
	Using := for Alternative Flip-flop Types

	Using Active-low Declarations
	Polarity Control
	Polarity Control with Istype

	Flip-flop Equations
	Feedback Considerations — Using Dot Extensions
	Dot Extensions and Architecture-independence
	Dot Extensions and Detail Design Descriptions

	Using Don't Care Optimization
	Exclusive OR Equations
	Optimizing XOR Devices
	Using XOR Operators in Equations
	Using Implied XORs in Equations
	Using XORs for Flip-flop Emulation

	State Machines
	Use Identifiers Rather Than Numbers for States
	Powerup Register States
	Unsatisfied Transition Conditions
	D-type Flip-flops
	Other Flip-flops

	Precautions for Using Don't Care Optimization
	Number Adjacent States for One-bit Change
	Use State Register Outputs to Identify States
	Using Symbolic State Descriptions

	Chapter 3 Designing with CPLDs
	CPLD Design Strategies
	Declaring Signals
	Using Intermediate Signals

	Chapter 4 Source File Examples
	Equations
	Memory Address Decoder
	Design Specification
	Design Method
	Test Vectors

	12-to-4 Multiplexer
	Design Specification
	Design Method
	Test Vectors

	4-Bit Universal Counter
	Using Sets to Create Modes
	Counter Reset
	Using Range Operators
	Design Description

	Bidirectional 3-state Buffer
	Design Specification
	Design Method

	4-Bit Comparator
	Design Specification
	Design Method
	Test Vectors

	Truth Table Examples
	Seven-segment Display Decoder
	Design Specification
	Design Method
	Test Vectors

	State Diagram Examples
	3-state Sequencer
	Design Specification
	Design Method
	Test Vectors

	Combined Logic Descriptions
	Design Specification — MUXADD
	Design Method — MUXADD
	Test Vectors — MUXADD
	Design Specification — BINBCD
	Design Method — BINBCD
	Test Vectors — BINBCD
	Design Specification — BJACK
	Design Method — BJACK
	Test Vectors — BJACK

	Hierarchy Examples
	ABEL and ispDesignExpert Projects
	Lower-level Sources

	Chapter 5 Language Reference
	. ext — Dot Extensions
	= — Constant Declarations
	'attr' — Signal Attributes
	@Directive — Directives
	@Alternate — Alternate Operator Set
	@Carry — Maximum Bit-width for Arithmetic Functions
	@Const — Constant Declarations
	@Dcset — Don't Care Set
	@Dcstate — State Output Don't Cares
	@Exit — Exit Directive
	@Expr — Expression Directive
	@If — If Directive
	@Ifb — If Blank Directive
	@Ifdef — If Defined Directive
	@Ifiden — If Identical Directive
	@Ifnb — If Not Blank Directive
	@Ifndef — If Not Defined Directive
	@Ifniden — If Not Identical Directive
	@Include — Include Directive
	@Irp — Indefinite Repeat Directive
	@Irpc — Indefinite Repeat, Character Directive
	@Message — Message Directive
	@Onset — No Don't Care's
	@Page — Page Directive
	@Radix — Default Base Numbering Directive
	@Repeat — Repeat Directive
	@Setsize — Set Indexing
	@Standard — Standard Operators Directive
	Async_reset and Sync_reset
	Case
	Cycle
	Constant Declarations
	Declarations
	Device
	End
	Equations
	Functional_block
	Fuses
	Goto
	If-Then-Else
	Interface (top-level)
	Interface (lower-level)
	Istype _ Attribute Declarations
	Library
	Macro
	Module
	Node
	Pin
	Property
	State (Declaration)
	State (in State_diagram)
	State_diagram
	State_register
	Sync_reset
	Test_vectors
	Title
	Trace
	Truth_table
	Wait
	When-Then-Else
	With
	XOR_factors

	Index

